
Maximal Extractable Value in Batch Auctions

MENGQIAN ZHANG, Yale University, USA
YUHAO LI, Columbia University, USA

XINYUAN SUN, Flashbots, USA
ELYNN CHEN, New York University, USA

XI CHEN, New York University, USA

In the ever-evolving blockchain ecosystem, decentralized exchanges (DEXs) have seen significant growth,

which, however, has also brought challenges of Maximal Extractable Value (MEV). DEXs offer a decentralized

platform for cryptocurrency trading. Such trading mechanisms primarily include Constant Function Market

Makers (CFMMs) and batch auctions.

We first examine MEV in batch auctions. By treating assets and transactions as goods and traders within

a pure exchange market, batch auctions can be formulated as a linear market, allowing exchange rates and

trading outcomes in a batch to be derived from the prices and allocation in its market equilibrium. This

design ensures fairness and efficiency from the perspective of economics. Despite the general belief that

batch auctions are less vulnerable to MEV due to uniform pricing and order independence of transactions,

we highlight that the block builder’s current ability to rearrange the batch content is certainly sufficient to

extract MEV in batch auctions, where the strategic behavior is a novel market equilibrium manipulation. We

further explore the computation and show that: When the transactions in a batch form a Fisher market, an

optimal attack can be computed in polynomial time. When the transactions form a general Arrow-Debreu

market, under the Unique Games Conjecture, obtaining a 50.01%-approximation is NP-hard.

In addition, we show it is NP-hard to compute a strategy that obtains even 0.01% of optimal MEV in CFMMs

when the fraction of swap fee is any constant larger than zero (e.g., 0.3%). This holds even for almost any

CFMM, including the simple CFMM with constant product function (e.g., Uniswap v2).

This paper provides a framework to study MEV in DEXs, and our results resolve the computation of optimal

MEV therein, contributing valuable insights to the ongoing discourse on DEX security.

Additional Key Words and Phrases: Blockchain, Market Equilibrium Manipulation, MEV, Batch Auction

Manuscript submitted for review to the 26th ACM Conference on Economics & Computation (EC'25).

HTTPS://ORCID.ORG/0000-0003-0247-6152
HTTPS://ORCID.ORG/0000-0001-5281-8742
HTTPS://ORCID.ORG/0009-0007-8672-0795
HTTPS://ORCID.ORG/0000-0002-7599-1828
HTTPS://ORCID.ORG/0000-0002-9049-9452


Mengqian Zhang, Yuhao Li, Xinyuan Sun, Elynn Chen, and Xi Chen 1

1 Introduction

Within the evolving landscape of blockchain technology, the decentralized finance (DeFi) space

has witnessed unprecedented growth, with various financial services available on-chain. As a

cornerstone of this movement, Decentralized Exchanges (DEXs) mark a significant shift in the

paradigm of asset exchange within the blockchain ecosystem.

Automated Market Makers (AMMs) represent the predominant class of DEXs by replacing

traditional order book mechanisms with liquidity pools. In this framework, traders interact directly

with the pools to swap their tokens, and the exchange rate is algorithmically determined based

on the pool’s token reserves. Many AMMs utilize constant functions [27], notably the constant

product formula popularized by Uniswap [1], and are therefore referred to as constant function

market makers (CFMMs). To mitigate the risk of unfavorable price movements, users typically

set a slippage tolerance, effectively establishing a minimum acceptable exchange rate for their

transactions. Additionally, a small swap fee (say, 0.3%) is charged on each transaction to reward

liquidity providers for their contributions.

Despite the huge advantages offered by DEXs, they also introduce the challenge of Maximal

Extractable Value (MEV) [10], a phenomenon that underscores the potential for block builders (e.g.,

miners, validators) to exploit their position by transaction insertion, deletion, and reordering for

financial gain. In the context of AMMs, the execution order of transactions plays a crucial role,

making them particularly susceptible to MEV exploitation, notably through front-running [10] and

sandwich attacks [34]. Beyond degrading the user experience, these unexpectedMEV behaviors have

also caused broader systemic issues, such as network congestion, high gas prices, and consensus

instability [10, 33].

To address these vulnerabilities, the novel exploration of batch auctions offers a promising DEX

design. Instead of processing transactions individually, DEXs utilizing batch auctions aggregate

orders over a short period and settle them at a set of uniform prices. Here, “uniform” means that

all successfully executed transactions in the same trading direction, say X → Y, are under the

same exchange rate 𝑝X/𝑝Y . Then, the critical challenge of this approach lies in setting prices for

all involved tokens. This problem turns out to be closely related to the market equilibrium. By

modeling tokens and transactions respectively as goods and traders in a pure exchange market,

each batch forms a linear market where each player’s utility function is linear, and the unique price

vector under market equilibrium is exactly what batch auctions need [25]. This feature of uniform

exchange rates eliminates the execution sequence in batch auctions and makes such DEXs resistant

to front-running, sandwich attacks, and internal arbitrage. While the batch auction design appears

fundamentally less vulnerable to MEV, as we are going to show, it still leaves enough non-trivial

space for a block builder to exploit batch transactions and extract MEV.

In this paper, we investigate the MEV optimization problem in these two prominent DEXs:

CFMMs and batch auctions. Specifically, we study the following natural questions: (i) How can a

strategic player extract MEV from batch auctions? (ii) Can the player efficiently obtain the optimal

MEV from orders in CFMMs or batch auctions? (iii) If achieving the “optimal MEV” is intractable,

is there an efficient algorithm that always achieves a good approximation?

These questions are of natural interest to block builders/searchers/solvers in the MEV supply

chain, as even marginal improvements in extraction efficiency can translate into significant financial

gains in the current highly competitive environment [13, 31]. Moreover, a clear characterization

of MEV extraction can equip DEX designers with essential insights to develop countermeasures

against adversarial exploitation [22]. Beyond builders and DEX designers, our findings can also

benefit the broader blockchain community, e.g., by informing policy debates and technical efforts

at more equitable MEV redistribution [32].
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1.1 Our Model and Contributions

This paper studies the MEV optimization problem in CFMMs and batch auctions. The analysis is

under a unified framework: both scenarios share the same format of transactions, the same strategy

space, and the same utility function.

The Model.We consider the exchange transactions among 𝑛 tokens {𝜏1, · · · , 𝜏𝑛}. In both scenarios,

a transaction is trying to swap one type of token X for another Y, represented in the format of

(X → Y, 𝛿X, 𝑟 ) but denoted by Swap and Batch, respectively. In other words, each Swap or Batch

transaction is composed of three components, i.e., the exchange direction X → Y, the number of

tokens willing to sell 𝛿X , and the threshold for the exchange rate 𝑟 which means the user should

receive at least 𝛿X · 𝑟 amount of token Y in return.

For a Swap transaction, tokens are exchanged by a certain CFMM, which supports the exchange

between two involved tokens. Without loss of generality, we explore the optimal MEV among the

Swap transactions between two tokens X,Y ∈ {𝜏1, · · · , 𝜏𝑛}. Instead, in the batch auction scenario,

all Batch transactions involving multiple tokens can be executed in the same batch.

Regarding the strategy space and utility function, we follow the consensus of the community

that MEV refers to the additional value that can be extracted from block production by including,

excluding, and reordering transactions in a block. From now on, we use attacker/mediator inter-

changeably to refer to the role (e.g., block builders, miners) who can extract MEV. Given a set of𝑚

user transactions

{
Swap

𝑖
}
𝑖∈[𝑚] or

{
Batch

𝑖
}
𝑖∈[𝑚] , the attacker is able to insert some transactions

of the same type, select a subset of user transactions, and compute an order for these selected

transactions, which together form an MEV strategy. For the batch auction scenario, the attacker

can ignore the last reordering step because the order has no influence on the execution outcome of

transactions.

Under a set of user transactions, once given an MEV strategy, the transactions’ outcomes as well

as the attacker’s profits are determined. In this paper, the utility of a strategy is measured by the

overall value of the attacker’s final token holdings. Note that the attacker’s profits are all from its

own transactions. What utility functions of both scenarios (formally defined in Equation (1) and

Equation (7)) do is to enumerate all attacker’s newly added transactions, and for each transaction,

its utility is the value of tokens finally received minus the value of tokens it brought. Here, the

value of a token is measured by its exogenous price, which represents the attacker’s self-belief –

it may be the price in another DEX, another domain, or even the off-chain information (e.g., the

price of tokens in a centralized exchange like Coinbase). Throughout this paper, we assume that

the exogenous prices remain the same during the attack, which is around 12 seconds in Ethereum.

Our Contributions.We initiate the study of MEV on batch swaps. It is a widespread belief that

batch auctions are fundamentally less vulnerable to MEV since the outcome doesn’t depend on the

order of transactions. However, we first observe that the ability to insert and delete transactions is

already sufficient for the mediator to extract MEV (see Example 3.3 for a very concrete example)!

By adopting the formulation of market equilibrium, such behavior is a novel market equilibrium

manipulation, where a strategic player in the market has a very strong power – they can arbitrarily

kick other participants out of the market and insert several fake identities. Although seemingly

unreasonable, this is what could happen with block builders in the current blockchain system. This

seeming unreasonableness exactly reflects the potential vulnerability of batch auctions, which, to

the best of our knowledge, was not discussed before. One plausible reason is that while one can

manipulate the batch auction in such a way, it is not clear how to manipulate since the outcome is

not as easily predictive as that in AMMs. To this end, as our technical contributions, we discover
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many underlying combinatorial structures of the optimal attacks, the insights of which are going

to be shown in the next subsection (Section 1.2).

As our second main contribution, we fully characterize the computational complexity of the MEV

optimization problem in batch auctions based on the structure of market: When the transactions in a

batch form a Fisher market, an optimal attack can be computed in polynomial time (Theorem 3.13);

When the transactions form a general Arrow-Debreu market, it is NP-hard to find such one

(Theorem 3.14). Furthermore, we strengthen the hardness result by showing that, in Arrow-Debreu

markets, computing a strategy that achieves even 50.01% of the optimal revenue remains NP-hard,

assuming the Unique Games Conjecture (a well-known conjecture in hardness of approximation)

[16].

MEV issues in AMMs have received a lot of attention; see e.g. [3, 10, 17, 24, 33, 34]. From the

computational aspect, previous work [3] shows a polynomial time algorithm that can obtain optimal

MEV for a special case where the AMM has no swap fees. In sharp contrast, as our third contribution

(Theorem 4.4), we show that it is NP-hard to compute a strategy that obtains even 0.01% of optimal

MEV in CFMMs when the fraction of swap fee is any constant larger than zero (e.g., 0.3%). This

holds even for almost any CFMM, including the simplest CFMM with constant product function

(i.e., Uniswap v2).

1.2 Overview of Insights in the Proofs

While optimizing MEV is computationally hard under both popular decentralized exchange scenar-

ios (CFMMs and Batch auctions), the routines towards these two hardness results, in fact, provide

many distinct insights, which we summarize below.

Batch auctions. Batch auctions have a more sophisticated global structure than AMMs, as they

bring the concept of equilibrium. Thus, one small change of the batch (insert, delete, or modify a

transaction) may result in dramatically different outcomes for every transaction, making it difficult

to analyze compared to AMMs. Nevertheless, we observe many underlying combinatorial structures

for optimal attacks and highlight the following two points, which we found insightful:

• In general, the directed graph of selected user transactions is acyclic (Lemma 3.8). The proof

of this lemma follows a simple trick: If there was some cycle, then the mediator can locate one

user transaction that can obtain profits, and replace it with their own transaction of exactly

the same content. Despite being simple and intuitive, this actually illustrates a kind of front-

running in batch auctions! The acyclic property also leads to identifying the hardness structure

from the Maximum Acyclic Subgraph problem, which we reduce to the MEV optimization

problem for the general Arrow-Debreu market.

• In general, the directed graph of the mediator’s transactions is acyclic (Lemma 3.9), and the

transactions are inserted along the edges of the undirected economy graph of the initial users’

transactions (Lemma 3.10). In other words, the mediator is never necessary to complicate

the market structure. In particular, when the mediator is attacking a set of user transactions

that form a Fisher market, it suffices to consider attacks that remain a simple Fisher market,

which is crucial to our efficient optimal algorithm for Fisher markets.

Note that all lemmas above assert structural statements that can be applied to the analysis of both

optimal and approximately optimal attack strategies. Thus they are also crucial for us to obtain the

50.01%-inapproximability result.

In fact, we couldn’t come up with a polynomial time approximation algorithm that achieves even

1% approximation guarantee. Thus, we conjecture even a 1%-approximation algorithm for that in

batch auctions is computationally hard. However, the Maximum Acyclic Subgraph problem has a
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very simple 50%-approximation algorithm. Thus to strengthen the hardness results, new ideas to

exploit the structure of batch auctions are needed.

CFMMs. Let’s first get intuition on why the mediator could get some MEV in CFMMs and then

explain why it is hard to obtain a good approximation of MEV. Imagine that at the latest state of a

CFMM pool, the exchange rate of two tokens is exactly the same as the ratio of their exogenous

prices. Then, the mediator could execute an arbitrary user transaction, after which the exchange

rate in the CFMM must deviate. Thus, this leaves a space for the mediator to back-run and obtain

some profits.

This is an ideal argument which, however, is not always true when there is a constant fraction

of swap fees (in particular, 𝑓 = 0.3% of tokens is charged in common Uniswap pools). Specifically,

when the volume of a user’s transaction is small, the profits obtained by back-running may not

be able to beat the swap fees! Thus, we should adapt our intuition to try to back-run some large

user transactions (i.e., transactions that want to swap a large amount of tokens), and there is where

another constraint comes in: the slippage tolerance of these transactions.

Suppose that there is a transaction Swap that wants to swap a relatively large number of Y
tokens for some X tokens, but with a non-trivial slippage tolerance requirement. The mediator

would meet the following challenge to finish the best back-running: The mediator would like to

find a set of users’X → Y transactions to reach a state at which the exchange rate of Swap exceeds

but is closest to its slippage tolerance. Thus, the NP-hard problem used in the reduction is the

Partition problem, which exactly reflects the hardness of achieving the goal above. We will provide

more intuition about this argument in Section 4.3 before the formal proof of Theorem 4.4.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we provide more background on the MEV,

its concrete behaviors in AMMs, and the design of batch auctions. In Section 3, we first provide

a light preliminary of market equilibrium and formulate batch auctions in this framework. We

then argue that the block builder’s ability to manipulate the block content is already sufficient to

extract MEV and formulate the optimal MEV problem. Then, we provide a few structural lemmas

that reveal combinatorial structures in attacks. They are crucial for us to prove our computational

results regarding the Fisher market and the general Arrow-Debreu market. Finally, in Section 4, we

provide the formulation of the MEV optimization problem in AMMs and show its (any) constant

inapproximability. We discuss some future directions in Section 5.

2 Background and Related Work

2.1 Maximal Extractable Value

Although DEXs allow users to directly interact with on-chain smart contracts through a trading

transaction when they want to exchange cryptocurrencies, such a transaction only represents

the individual’s trading intent. The trading is truly executed when the transaction is included

in a block on the canonical chain, which is managed by miners (in Proof-of-Work networks) or

validators (in Proof-of-Stake networks). In the block-building process, they have the authority to

decide which transactions are included in a block and in what order. It’s found that block builders

are able to extract additional value from block production in excess of the standard block rewards

and gas fees by manipulating the block content. This additional value was initially referred to

as “miner extractable value” and modified to be “maximal extractable value” since the transition

from proof-of-work to proof-of-stake via The Merge. In practice, besides block builders, a large

portion of MEV is extracted by independent network participants called “searchers.” As the name

suggests, they run complex algorithms to search profitable MEV opportunities and have bots to
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submit MEV-capture transactions automatically. The studies of MEV strategies naturally interest

these roles, which are collectively referred to as the attacker or mediator in this paper.

2.2 MEV in AMMs

In the context of AMMs, the MEV phenomenon arises primarily due to the arbitrage opportunities

caused by the price movement within a DEX or price discrepancy among DEXs. DEX arbitrage is

the simplest and most well-known MEV opportunity. Zhou et al. [33] translate the detection of

DEXs arbitrage into a negative cycle detection problem, and Wang et al. [30] further analyze the

profitability conditions and optimal trading strategies of cyclic arbitrages among multiple DEXs.

After detecting such a profitable MEV opportunity, someone can submit their own transaction

with the same arbitrage logic but a higher gas price to steal the profit by front-running. Torres

et al. [29] perform a large-scale analysis of the real profits made by front-running attacks on

Ethereum, providing evidence that front-running is highly lucrative. Qin et al. [24] provide a

generalized transaction replay algorithm to clone and front-run a victim transaction without the

need to understand the underlying transaction logic. Sandwich attack [34] is another common

MEV behavior where a trader can “manually” create the arbitrage opportunity by exploiting a

large order, the profit of which is quantified by Qin et al. [24]. Many other behaviors like back-run

arbitrage [19] and cross-domain MEV [23] are also discussed in the literature.

The most related to us are the following papers. Bartoletti et al. [3] explore the same MEV

optimization problem in AMMs but without swap fees, where the optimal attack is a multi-layer

sandwich. [15] considers the practical scenario with swap fees and computes the optimal strategy

to sandwich a single transaction. Our work fills this research gap by providing the computational

hardness of attacking multiple transactions in AMMs with swap fees. Another related work is [18],

which studies both with and without fees in a special AMM with greedy sequencing rule.

2.3 Batch Auctions

In traditional finance, batching trades has been proposed as a solution to the high-frequency trading

arms race [4]. In the cryptocurrency domain, batch auctions have emerged as an attractive approach

to mitigate inefficiencies and MEV challenges inherent in AMMs, with several systems already

proposed and deployed. For instance, in SPEEDEX [25], the batch execution is triggered when the

core SPEEDEX engine receives a new block, followed by an algorithm query to compute clearing

valuations and, thus, the execution outcomes. Similarly, CoWSwap [28], which uses mixed-integer

programming to clear offers in batches, also contains two steps: a centralized entity known as the

“driver” aggregates all user orders; these orders are then relayed to specialized centralized actors

termed “solvers”, who compete to solve an optimization problem, and as a result, determine the

trading price (and over half [11] of non-stablecoin CoWSwap orders are traded against private

liquidity). As we later demonstrate, organizing batches through a mediator brings the risk of MEV.

This paper mainly follows the mathematical model in SPEEDEX [25], which maps the computa-

tion of batch prices to a well-studied equilibrium computation problem of pure exchange markets

(details are introduced later in Section 3.1). In their paper, the authors mentioned a conceptually

similar MEV risk, remarking that “one might estimate the clearing prices in a future batch and

arbitrage the batch against low-latency markets.” To the best of our knowledge, we are the first to

formally study MEV in batch auctions. Although our analysis focuses on the market equilibrium

model, the resulting insights — especially regarding MEV strategies — have broader applicability.

A recent direction of work [5–7, 26] has also explored combining batch auctions with CFMMs,

which is orthogonal to the subject of study of this paper.
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3 MEV in Batch Auctions

Batch auction is a trading mechanism that computes a uniform exchange price and executes all

transactions simultaneously. So the prices and outcome of the execution do not depend on the order

of the transactions. Because of this, batch auctions are believed to be fundamentally less vulnerable

to MEV compared to order-dependent mechanisms (such as constant function automated market

makers).

However, even though batch auctions are robust against front-running and sandwich attacks

discussed above, we observe new strategy space for a mediator to obtain MEV by manipulating

the block content. In the rest of this section, we first introduce the concept of market equilibrium

for efficiency of the batch price, which was also introduced in the design of SPEEDEX as the

mathematical foundation [25]. Then we initial and formalize the study of MEV therein.

3.1 Market Equilibrium Formulation of Batch Auctions

Pure Exchange Market. A pure exchange market consists of 𝑛 divisible goods, denoted by

{𝜏1, · · · , 𝜏𝑛} and𝑚 traders, denoted by {𝑇1, · · · ,𝑇𝑚}. Every trader 𝑇𝑖 initially owns some endow-

ment w𝑖 ∈ R𝑛≥0, where 𝑤𝑖 𝑗 represents the amount of 𝜏 𝑗 that 𝑇𝑖 owns. Every trader 𝑖 has its own

utility function U𝑖 : R𝑛≥0 → R≥0, where U𝑖 (x𝑖 ) means 𝑇𝑖 ’s utility if she gets a bundle of goods

with amount 𝑥𝑖 𝑗 for 𝜏 𝑗 . In this paper, we focus on linear market, meaning that the utility function

U𝑖 =
∑
𝑗 𝑢𝑖 𝑗𝑥𝑖 𝑗 , where 𝑢𝑖 𝑗 ≥ 0 is the utility (or say preference) of trader 𝑖 for a unit amount of

goods 𝜏 𝑗 . In economics, it has long been understood that prices are determined by the interplay of

supply and demand where under a competitive price, supply precisely meets demand. Such an idea

is captured by market equilibrium.

Definition 3.1 (Market Equilibrium). A price vector p along with an allocation x is a market

equilibrium if the following conditions meet:

• Market Clearance:

∑
𝑖∈[𝑚] 𝑥𝑖 𝑗 =

∑
𝑖∈[𝑚] 𝑤𝑖 𝑗 for all 𝑗 ∈ [𝑛];

• Budget Constraint:

∑
𝑗∈[𝑛] 𝑥𝑖 𝑗𝑝 𝑗 =

∑
𝑗∈[𝑛] 𝑤𝑖 𝑗𝑝 𝑗 for all 𝑖 ∈ [𝑚]; and

• Individual Optimality: x𝑖 ∈ OPT𝑖 (p), where OPT𝑖 := argmaxU𝑖 (x𝑖 ) among all x𝑖 that satisfies
the budget constrain

∑
𝑗∈[𝑛] 𝑥𝑖 𝑗𝑝 𝑗 ≤

∑
𝑗∈[𝑛] 𝑤𝑖 𝑗𝑝 𝑗 .

The existence of market equilibrium (sometimes called general equilibrium) undermild conditions

was proved by Arrow and Debreu [2] and independently by McKenzie [21], which is regarded by

many as the crown jewel of Mathematical Economics. Our world is much easier to navigate: We

will show that the batch prices can be computed by a linear market equilibrium.

Consider a set of Batch transactions

{
Batch

1, · · · , Batch𝑚
}
among tokens {𝜏1, · · · , 𝜏𝑛}, where

each Batch
𝑖 = (X𝑖 → Y𝑖 , 𝛿X𝑖 , 𝑟𝑖 ) would like to swap 𝛿X𝑖 amount of token X𝑖

for some token Y𝑖

and the exchange rate between Y𝑖
and X𝑖

should be at least 𝑟𝑖 (i.e., the amount of received Y𝑖

should be no less than 𝑟𝑖𝛿X𝑖 ). Here, tokens naturally correspond to the goods in the market. Every

transaction Batch
𝑖
can be viewed as a trader, where its endowment is𝑤𝑖, 𝑗 = 𝛿X𝑖 for 𝜏 𝑗 = X𝑖

and

𝑤𝑖, 𝑗 = 0 otherwise. Its utility function is defined asU𝑖 (x𝑖 ) = 𝑟𝑖 · 𝑥𝑖 𝑗 + 𝑥𝑖𝑘 for 𝜏 𝑗 = X𝑖
and 𝜏𝑘 = Y𝑖

.

Given any set of Batch transactions, we refer to the corresponding market as an Arrow-Debreu

market if there is no more specified structure (this is mainly for comparison of the Fisher market

that we will define below).

The market constructed above is a linear market in which every participant’s utility function is

linear (in fact, it is even more succinct – only two goods have non-zero coefficients). The linear

market enjoys many nice properties: First, previous work [12] implies that our batch auction
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structure always has a unique competitive price vector
1
, so that we do not face the equilibrium

selection problem. In the distributed system where the Batch transactions are eventually processed

by an arbitrary node, it releases us from the concern that certain nodes may strategically decide the

exchange rates. Second, it is polynomial-time computable, while for some other classic markets like

Leontief or CES (stands for constant elasticity of substitution) functions, the computation of market

equilibrium is computationally hard (PPAD-complete [8, 9]). Third, it is generally well understood

from the works of past decades by researchers from economics, computer science, and operation

research.

Proposition 3.2 ([25]). By modeling the tokens

{
𝜏 𝑗
}
𝑗∈[𝑛] and transactions

{
Batch

𝑖
}
𝑖∈[𝑚] as goods

and traders, under the (unique) competitive price vector p and arbitrary equilibrium allocation x, it
satisfies

• Internal arbitrage-free: The prices are internal arbitrage-free (simply because we have a uniform

price vector);

• Soundness: Any exchange (allocation) follows the price vector p and meets its threshold require-

ment for the exchange ratio;

• Completeness: For any Batch
𝑖
with its threshold 𝑟𝑖 , 𝜏 𝑗 = X𝑖

and 𝜏𝑘 = Y𝑖
, if 𝑝 𝑗/𝑝𝑘 > 𝑟𝑖 , then

Batch
𝑖
sells all its X𝑖

and gets 𝛿X𝑖 · 𝑝 𝑗/𝑝𝑘 amount of Y𝑖
.

3.2 MEV Optimization Problem

The feature of uniform price in batch auctions makes it resistant to several DEX-related MEV

behaviors like sandwich attacks and internal arbitrage. As a result, MEV seems impossible in batch

auctions. We first note that this is not the case – we observe new strategic behavior, which is high-

levelly in line with block content manipulation, but different from well-known MEV strategies like

front-running or sandwich attack. The point is the execution result of a Batch transaction depends

on which other transactions are included in the batch. Therefore, a strategic mediator can affect

the outcome of exchanges by manipulating the batch contents (inserting and deleting transactions).

The mediator still respects the market equilibrium outcomes, but that of the manipulated block

content, during which it may gain profits. We give an example to provide more intuition.

Example 3.3 (MEV in Batch Auctions). Consider the scenario with three tokens {𝐴, 𝐵,𝐶} and
three user transactions

{
Batch

𝑖
}
𝑖∈[1,3] where Batch

1 = (𝐴 → 𝐵, 2, 0.5), Batch2 = (𝐵 → 𝐶, 1, 4),
and Batch

3 = (𝐶 → 𝐴, 4, 0.5). Assume the exogenous prices of tokens are all one, namely,

𝑝∗
𝐴
= 𝑝∗

𝐵
= 𝑝∗

𝐶
= 1. Given this batch of transactions, an honest mediator makes them exchange

with each other (i.e., three users receive 1𝐵, 4𝐶, 2𝐴, respectively) under the price equilibrium

𝑝𝐴 = 0.5, 𝑝𝐵 = 1, 𝑝𝐶 = 0.25. Nevertheless, a strategic mediator can extract some additional

value by re-organizing the batch. One method is to exclude Batch
2
and insert two attacking

transactions

{
Batch

4 = (𝐵 → 𝐴, 1, 2), Batch5 = (𝐴 → 𝐶, 2, 2)
}
. By executing them in the batch{

Batch
𝑖
}
𝑖∈{1,3,4,5} , the attacker receives 2𝐴 and 4𝐶 at the cost of 1𝐵 and 2𝐴, obtaining a net benefit

of 3 (recall that their exogenous prices are all 1). Another way is to directly replace the Batch
2

with the same attacking transaction Batch
2
′
= (𝐵 → 𝐶, 1, 4). In this way, the attacker can also get

a profit of 3.

Next, we give formal definitions of an attacker’s strategy space and utility function.

1
The uniqueness is in terms of scaling, which means scaling the equilibrium price vector by a constant is also an equilibrium.

It does not matter because what is really needed is the ratio of prices, which remains the same no matter how it is scaled.
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Definition 3.4 (Strategy Space). Given a batch of user transactions

{
Batch

𝑖
}
𝑖∈[𝑚] , a mediator

could select a subset of all these transactions 𝑆 ⊆ [𝑚], create 𝑘 its own Batch transactions{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ] , and execute them in a same batch.

Without loss of generality, we assume that all mediator’s newly inserted transactions will be

successfully executed; otherwise, removing failed ones from the set

{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ] makes no

difference in results.

Definition 3.5 (Utility Function). Mediator’s profit𝑈 (𝑆,
{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ]) is defined as

max

x∈X

∑︁
𝑖∈[𝑚+1:𝑚+𝑘 ]

−𝑤𝑖 𝑗 · 𝑝∗𝑗 + 𝑥𝑖ℓ · 𝑝∗ℓ , (1)

where Batch
𝑖 = (𝜏 𝑗 → 𝜏ℓ , 𝛿𝜏 𝑗 = 𝑤𝑖 𝑗 , 𝑟𝑖 ), X is the set of feasible allocations under equilibrium, and

vector p∗ represents the exogenous prices of tokens.

Remark. Note that under market equilibrium, there may exist multiple equilibrium alloca-

tions although the price vector is unique. For instance, consider the batch of user transactions{
Batch

𝑖
}
𝑖∈[1,3] in Example 3.3. All execution and none execution (as well as partial executions)

are all equilibrium allocations. This is not a problem in an “honest” market where everyone re-

ports their true preferences because each equilibrium allocation maximizes their utility, which is

defined according to the reported preferences (i.e., the pair of trading tokens X𝑖
and Y𝑖

and the

lowest acceptable exchange rate 𝑟𝑖 ). However, for the mediator who may report fake preferences

to manipulate the market, this is not the case; namely, maximizing the utility of newly inserted

transactions is not equal to the maximization of the mediator’s utility, which is defined based on its

true belief 𝑝∗. Considering that different equilibrium allocations x ∈ X may bring different profits,

we (optimistically) define the utility as the maximal one as shown in Equation (1). There may be

other reasonable definitions, say, the minimal one (thus pessimistically). In fact, this relates to the

equilibrium selection problem in the batch auction design, which is an interesting topic but not the

focus of this paper. More importantly, our following analysis is independent of the specific selection

rule (say, “max”, “min”, or others). Intuitively, multiple (different) allocations under equilibrium

only happen to transactions satisfying that their specified exchange rates are exactly the same

as the ratio of equilibrium prices. However, it is easy to bypass this case and guarantee a unique

allocation by perturbing the mediator’s attacking strategy with an arbitrarily small loss on the

utilities.

Definition 3.6 (Batch-MEV). The Batch-MEV problem refers to the following computational

problem: Given user transactions

{
Batch

𝑖
}
𝑖∈[𝑚] , compute a strategy (𝑆,

{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ]) that

achieves the optimal revenue. For 𝑐 ∈ (0, 1), we say a strategy is a 𝑐-approximation to Batch-MEV

if the strategy obtains at least 𝑐-fraction of the optimal MEV revenue.

This section asks the following research question: Given a batch of user transactions, how to

compute an (approximately) optimal strategy for a mediator? Based on the structure of the given

user transactions, we discuss this problem for the Fisher Market (Section 3.4) and the general

Arrow-Debreu market (Section 3.5), respectively. We show that in the Fisher Markets, an optimal

strategy can be found in polynomial time (Theorem 3.13). However, in general, Arrow-Debreu

markets, we show that it is NP-hard to compute an optimal strategy (Theorem 3.14). Furthermore,

we strengthen the hardness result by showing that, in Arrow-Debreu markets, computing a strategy

that achieves even 50.01% of the optimal revenue is computationally hard (Theorem 3.17), assuming

the Unique Games Conjecture (a well-known conjecture in hardness of approximation) [16].
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3.3 Combinatorial Structures in the Batch-MEV problem

In this section, we present a few general lemmas that provide more intuition about how to tackle

the MEV Optimization Problem in Batch auctions, and are very useful to the analysis of the

computational results. Before that, from a technical perspective, we recall the definition of the

economy graph of a market, which was defined by Maxfield [20]. In our context, we will use the

terminology of transactions, and define both the directed and undirected versions of economy

graphs for our purpose.

Definition 3.7 (Economy Graph). Given a set of transactions

{
Batch

𝑖
}
𝑖∈[𝑚] , we define a directed

graph as follows. Each vertex corresponds to a token 𝜏𝑖 . For two tokens 𝜏𝑖 and 𝜏 𝑗 , we add a directed

edge from 𝜏𝑖 to 𝜏 𝑗 if there is a transaction Batch
𝑘
that swaps 𝜏𝑖 for 𝜏 𝑗 . We call this (directed) graph

𝐺 the economy graph of

{
Batch

𝑖
}
𝑖∈[𝑚] .

The undirected economy graph 𝐻 is defined as the same graph as the directed economy graph𝐺

but all edges are changed to undirected.

Intuitively, if there is an undirected edge between two tokens in 𝐻 , this means there is a user

who is interested in these two tokens (would like to swap one token for the other).

Now we are ready to introduce the lemmas.

At a high level, the first lemma works on the side of selecting users’ transactions, showing

that for an attack, it suffices to select users’ transactions such that the directed economy graph

of them is acyclic. The second lemma and third lemma concern the side of inserting attacking

transactions, stating that for an attack, it is not necessary to make the directed economy graph

more complicated. More precisely, it suffices to only insert transactions such that the following

two conditions are met: (1) the directed economy graph of the inserted transactions is acyclic, and

(2) the transactions are inserted along the edges of the undirected economy graph of the initial

users’ transactions

{
Batch

𝑖
}
𝑖∈[𝑚] . These lemmas bring many insights for the mediator to search

for an (approximately) optimal attack and are crucial for both our efficient algorithm design, and

NP-hard analysis, and the hardness of approximation analysis in subsequent sections.

Lemma 3.8. Let 𝐻 = (𝑉 , 𝐸) be the undirected economy graph of users’ transactions

{
Batch

𝑖
}
𝑖∈[𝑚] .

It is sufficient to consider only attacks of the form (𝑆,
{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ]) such that the economy

graph of selected users’ transactions

{
Batch

𝑖
}
𝑖∈𝑆 is acyclic.

Proof. Without loss of generality, assume that all transactions in this batch, namely, all transac-

tions

{
Batch

𝑖
}
𝑖∈𝑆 ∪

{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ] are successfully executed. Otherwise the mediator can

remove all transactions that are not executed and the profit will be the same.

Suppose there is a directed cycle in the economy graph of selected users’ transactions. With-

out loss of generality, assume the cycle is

(
Batch

1, Batch2, · · · , Batch𝑡
)
with a vertex sequence

(𝜏1, 𝜏2, · · · , 𝜏𝑡 , 𝜏1), where 𝑡 ∈ [2,𝑚]. Then, under equilibrium, there are only two cases.

• Case 1: the exchange rates of all transactions in the cycle are exactly the same as the ratio of

corresponding tokens’ exogenous prices. In this case, replacing one of the user’s transactions

with an attacking transaction of the same content has no impact on the equilibrium nor the

mediator’s profit (as the profit of this replacement transaction is 0).

• Case 2: the exchange rates of transactions in the cycle are not all the same as the ratio of

corresponding tokens’ exogenous prices. Note that

∏𝑡−1
𝑗=1

𝑝𝜏𝑗

𝑝𝜏𝑗+1
· 𝑝𝜏𝑡
𝑝𝜏

1

= 1 =
∏𝑡−1

𝑗=1

𝑝∗𝜏𝑗
𝑝∗𝜏𝑗+1

· 𝑝
∗
𝜏𝑡

𝑝∗𝜏
1

,

where

𝑝𝜏𝑗

𝑝𝜏𝑗+1
is the equilibrium exchange rate of the transaction swapping 𝜏 𝑗 for 𝜏 𝑗+1 and

𝑝∗𝜏𝑗
𝑝∗𝜏𝑗+1

is the exogenous rate of these two tokens. In this case, at least one transaction’s equilibrium
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exchange rate is better than the exogenous one, say Batch
𝑗
with the direction 𝜏 𝑗 → 𝜏 𝑗+1.

In other words, 𝑝 𝑗/𝑝 𝑗+1 > 𝑝∗𝑗 /𝑝∗𝑗+1. Then, replacing this user’s transaction by an attacking

transaction with the same content (namely, remove this user’s transaction from the batch

and insert a mediator’s transaction with the same content) does not influence the equilibrium

but increases the mediator’s utility.

In this way, for any attacking strategy with a directed cycle in the economy graph of selected user

transactions, there is another strategy with no such cycle, such that the attacker receives no less

profit than the previous one.

This finishes the proof. □

Lemma 3.9. Let 𝐻 = (𝑉 , 𝐸) be the undirected economy graph of users’ transactions

{
Batch

𝑖
}
𝑖∈[𝑚] .

It is sufficient to consider only attacks of the form (𝑆,
{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ]) such that the economy

graph of mediator’s transactions

{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ] is acyclic.

Proof. Without loss of generality, assume that all transactions in this batch, namely, all transac-

tions

{
Batch

𝑖
}
𝑖∈𝑆 ∪

{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ] are successfully executed. Otherwise the mediator can

remove all transactions that are not executed and the profit will be the same.

Suppose there is a directed cycle in the economy graph of the mediator’s transactions. Without

loss of generality, assume the cycle is

(
Batch

𝑚+1, Batch𝑚+2, · · · , Batch𝑚+𝑡 )
with a vertex sequence

(𝜏1, 𝜏2, · · · , 𝜏𝑡 , 𝜏1), where 𝑡 ∈ {2, · · · , 𝑘}. Note that these transactions are executed at a uniform

clearing price. Thus, the mediator is cyclically exchanging 𝜏1 tokens to 𝜏2 tokens, 𝜏2 tokens to 𝜏3
tokens, and so on, ultimately converting 𝜏𝑡 tokens to 𝜏1 tokens. Since this forms a redundant cycle,

we can proportionally reduce all transactions in the cycle by a common amount, allowing the

“smallest” transaction to be eliminated without affecting the mediator’s profit.

By this procedure we can decrease the number of mediator’s transactions by one. Repeating

this procedure, we can make sure that the economy graph of the mediator’s transactions is acyclic

without affecting the mediator’s profit. □

Before presenting the last lemma, we first show the following intuitive claim for convenience.

Claim 1. Let 𝐻 = (𝑉 , 𝐸) be the undirected economy graph of users’ transactions

{
Batch

𝑖
}
𝑖∈[𝑚] .

If 𝐻 = (𝑉 , 𝐸) is not connected, then the mediator can attack each connected component separately.

Proof. Suppose that the connected components are 𝑉1, · · · ,𝑉𝑡 , where 𝑉1 ∪ · · · ∪ 𝑉𝑡 = 𝑉 . Fix

an attack att = (𝑆,
{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ]). By Lemma 3.9, we know that the directed economy

graph of

{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ] is acyclic. Thus, in the new market formed by att, the vertex set of

every strongly connected component must be contained in 𝑉𝑖 for some 𝑖 ∈ [𝑡]. Noting that the

edges between strongly connected components are essentially irrelevant to the (unique) market

equilibrium, we conclude that att is attacking each connected component 𝑉𝑖 separately. So we

conclude the claim. □

Lemma 3.10. Let𝐻 = (𝑉 , 𝐸) be the undirected economy graph of users’ transactions

{
Batch

𝑖
}
𝑖∈[𝑚] .

It is sufficient to consider only attacks of the form (𝑆,
{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ]) such that the undirected

economy graph 𝐻 ′ = (𝑉 , 𝐸′) of
{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ] satisfies 𝐸

′ ⊆ 𝐸.

Proof. Assume from Claim 1 that the original undirected economy graph 𝐻 = (𝑉 , 𝐸) is con-
nected. Given any general strategy (𝑆,

{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ]), we will construct a new strategy such

that (1) the undirected economy graph of the attacking transactions in the new strategy is a subgraph

of 𝐻 ; and at the same time (2) the mediator’s profit is the same as using (𝑆,
{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ]).
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By doing so, we can conclude this lemma. In particular, the selected users’ transactions are the

same, so we focus on the attacking transactions next.

Consider any transaction Batch
𝑖 = (𝜏 𝑗 → 𝜏 𝑗 ′ ,𝑤𝑖 𝑗 , 𝑟𝑖 ) for some 𝑖 ∈ [𝑚 + 1 :𝑚 + 𝑘]. Suppose that

Batch
𝑖
is successfully executed and ( 𝑗, 𝑗 ′) ∉ 𝐸. Note that if Batch𝑖 is not successfully executed,

we can simply remove it from the strategy and everything will remain unchanged.

We will replace the transaction Batch
𝑖
with a set of new transactions such that the edges that

correspond to new transactions are a subset of 𝐸, and the mediator’s profit remains unchanged.

Since𝐻 is connected, there is at least one simple path from 𝑗 to 𝑗 ′. Denote such path by 𝑣0, · · · , 𝑣𝑡 ,
where 𝑣0 = 𝑗 and 𝑣𝑡 = 𝑗 ′. Let p be the equilibrium price vector of (𝑆,

{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ]). We

construct 𝑡 new transactions based on these information as follows. For every ℓ ∈ [𝑡], we let the new
transaction be (𝜏𝑣ℓ−1 → 𝜏𝑣ℓ ,𝑤𝑖 𝑗 ·

𝑝𝑣ℓ−1
𝑝0

,
𝑝𝑣ℓ
𝑝𝑣ℓ−1

). Note that by construction all these new transactions

are with respect to 𝐸, i.e., the edges that correspond to these newly constructed transactions are

subset of 𝐸.

Now we show that the mediator’s profit remains unchanged. Note that mediator brings𝑤𝑖 𝑗 ·
𝑝𝑣ℓ−1
𝑝0

more 𝜏𝑣ℓ−1 tokens. But it is easy to verify that under new market equilibrium, each transaction

(𝜏𝑣ℓ−1 → 𝜏𝑣ℓ ) will be successfully executed, and obtain𝑤𝑖 𝑗 ·
𝑝𝑣ℓ
𝑝0

many taken 𝜏ℓ . In total, the payoff

of middle transactions will be canceled and the mediator will pay 𝑤𝑖 𝑗 many token 𝜏 𝑗 and get

𝑤𝑖 𝑗 ·
𝑝𝑣𝑡
𝑝0

= 𝑤𝑖 𝑗 ·
𝑝 𝑗 ′
𝑝 𝑗

many token 𝜏 𝑗 , which is exactly the same as before.

This finishes the proof. □

Remark. Note that the lemmas above assert structural statements that can be applied to the

analysis of both optimal and approximately optimal attack strategies. We will use these lemmas

throughout the remaining section.

3.4 Optimal MEV under Fisher Market

Our main result in this section is an efficient (in fact, almost linear-time) algorithm for the mediator

to compute an optimal strategy for MEV under Fisher market structure, that is, where trades occur

between 𝜏1 and 𝜏 𝑗 for all 𝑗 ∈ [2 : 𝑛], with no trades taking place between 𝜏 𝑗 and 𝜏 𝑗 ′ for any

𝑗, 𝑗 ′ ∈ [2 : 𝑛]. An interpretation of this model is to view 𝜏1 as USDC and every user’s transaction is

trying to trade between other cryptocurrencies with USDC.

We first give two lemmas to prepare for our optimal MEV algorithm.

The first lemma says that the mediator can independently attack the user transactions that occur

between 𝜏1 and 𝜏 𝑗 for all 𝑗 ∈ [2 : 𝑛].

Lemma 3.11. For every 𝑗 ∈ [2 : 𝑛], let 𝑆1↔𝑗 ⊆ [𝑚] be the indices of all users’ transactions that trade
between 𝜏1 and 𝜏 𝑗 , and ATT𝑗 be an optimal strategy to attack

{
Batch

𝑖
}
𝑖∈𝑆1↔𝑗

. Then, ∪𝑗∈[2:𝑛]ATT𝑗 is
an optimal attack to

{
Batch

𝑖
}
𝑖∈[𝑚] , where a union of two strategy is defined as the union of selected

users’ transactions and the union of inserted attacking transactions respectively.

Proof. Let 𝑆𝑆1→𝑗 denote the set of successfully executed transactions swapping 𝜏1 for 𝜏 𝑗 in the

final batch, while 𝑆𝑆 𝑗→1 denote the set of successfully executed transactions that bring token 𝜏 𝑗
and get 𝜏1. Recall that under a market equilibrium, the market clearance condition holds. It implies

that for any token 𝜏 𝑗 where 𝑗 ∈ [2 : 𝑛], we have∑︁
Batch

𝑖 ∈𝑆𝑆1→𝑗

𝑥𝑖 𝑗 =
∑︁

Batch
𝑖 ∈𝑆𝑆 𝑗→1

𝑤𝑖 𝑗 . (2)
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Let 𝑝1 and 𝑝 𝑗 be the equilibrium prices of 𝜏1 and 𝜏 𝑗 , respectively. The requirement that everyone

spends their entire profit under the equilibrium implies that∑︁
Batch

𝑖 ∈𝑆𝑆1→𝑗

𝑥𝑖 𝑗𝑝 𝑗 =
∑︁

Batch
𝑖 ∈𝑆𝑆1→𝑗

𝑤𝑖1𝑝1,
∑︁

Batch
𝑖 ∈𝑆𝑆 𝑗→1

𝑥𝑖1𝑝1 =
∑︁

Batch
𝑖 ∈𝑆𝑆 𝑗→1

𝑤𝑖 𝑗𝑝 𝑗 . (3)

Combining Equation (2) and Equation (3), we have∑︁
Batch

𝑖 ∈𝑆𝑆1→𝑗

𝑤𝑖1 =
∑︁

Batch
𝑖 ∈𝑆𝑆 𝑗→1

𝑥𝑖1. (4)

It means that under equilibrium, the consumed token 𝜏1 in the direction 𝜏 𝑗 → 𝜏1 are all from the

transactions in the opposite direction; and vice versa for token 𝜏 𝑗 according to Equation (2). In

other words, each pair of tokens (𝜏1, 𝜏 𝑗 ) in the Fisher market can be viewed as a sub-market where

transactions between them are self-sufficient under equilibrium. Thus, the mediator is able to

independently attack the user transactions in each sub-market, namely, to consider selecting which

user transactions and inserting which attacking transactions. □

Now we are able to focus on each individual pair of tokens (𝜏1, 𝜏 𝑗 ) for every 𝑗 ∈ [2 : 𝑛]. The next
lemma further simplifies the strategy space for optimal attacks therein.

Lemma 3.12. For each pair (𝜏1, 𝜏 𝑗 ) where 𝑗 ∈ [2 : 𝑛], there is an optimal attack which inserts

transactions in at most one direction. Furthermore, all transactions in this direction are from the

mediator.

Proof. Without loss of generality, suppose the mediator inserts a transaction in each direction

between 𝜏1 and 𝜏 𝑗 where 𝑗 ∈ [2 : 𝑛], denoted by Batch
𝑚+1 = (𝜏1 → 𝜏 𝑗 , 𝛿𝜏1 = 𝑤𝑚+1,1, 𝑟𝑚+1 = 𝑝1/𝑝 𝑗 )

and Batch
𝑚+2 = (𝜏 𝑗 → 𝜏1, 𝛿𝜏 𝑗 = 𝑤𝑚+2, 𝑗 , 𝑟𝑚+2 = 𝑝 𝑗/𝑝1). If𝑤𝑚+1,1 · 𝑝1/𝑝 𝑗 = 𝑤𝑚+2, 𝑗 where 𝑝1 and 𝑝 𝑗

are the tokens’ equilibrium prices, Batch
𝑚+1

and Batch
𝑚+2

supply each other, bringing a utility

of 0. Then, removing both transactions has no impact on the mediator’s utility. Otherwise, let

Batch
𝑚+3 =

{
(𝜏1 → 𝜏 𝑗 , 𝛿𝜏1 = 𝑤𝑚+1,1 −𝑤𝑚+2, 𝑗 · 𝑝 𝑗/𝑝1, 𝑟𝑚+3 = 𝑝1/𝑝 𝑗 ), 𝑤𝑚+1,1 · 𝑝1/𝑝 𝑗 > 𝑤𝑚+2, 𝑗 ;
(𝜏 𝑗 → 𝜏1, 𝛿𝜏 𝑗 = 𝑤𝑚+2, 𝑗 −𝑤𝑚+1,1 · 𝑝1/𝑝 𝑗 , 𝑟𝑚+3 = 𝑝 𝑗/𝑝1), 𝑤𝑚+1,1 · 𝑝1/𝑝 𝑗 < 𝑤𝑚+2, 𝑗 .

(5)

Following the observation that Batch
𝑚+1

and Batch
𝑚+2

will be partially exchanged with each

other, replacing them with Batch
𝑚+3

has no impact on the batch execution and mediator’s utility.

As a result, only one direction has the attack transaction. In fact, if 1 → 𝑗 is the direction, then

the prices must satisfy 𝑝1/𝑝 𝑗 ≥ 𝑝∗
1
/𝑝∗𝑗 , and if 𝑗 → 1 is the direction, then the prices must satisfy

𝑝1/𝑝 𝑗 ≤ 𝑝∗
1
/𝑝∗𝑗 . Otherwise removing this attack transaction (and all user transactions between 𝜏1

and 𝜏 𝑗 ) from the batch increases the mediator’s utility.

Then we show that all transaction in this direction are from the mediator. Under equilibrium, if

there are user transactions successfully executed in a this direction, replacing them with attacking

transactions of the same content is still an equilibrium but brings more profit for the mediator.

This concludes the proof. □

Now we are ready to describe our main algorithm and state our main theorem.

Theorem 3.13. Given a set of users’ transactions

{
Batch

𝑖
}
𝑖∈[𝑚] such that they form a Fisher

market (i.e., trades occur exclusively between 𝜏1 and 𝜏 𝑗 for all 𝑗 ∈ [2 : 𝑛], with no trades taking place

between 𝜏𝑘 and 𝜏 𝑗 for any 𝑘, 𝑗 ∈ [2 : 𝑛]), algorithm 1 finds a strategy that can obtain optimal MEV in

time �̃� (𝑚), where the notation �̃� (·) hides polylogrithemic factors.
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ALGORITHM 1: Optimal MEV Strategy for Batch Transactions that Form a Fisher Market

Input: A set of users’ transactions

{
Batch

𝑖
}
𝑖∈[𝑚] that forms a Fisher market and a set of exogenous

prices

{
𝑝∗
𝑖

}
𝑖∈[𝑛] .

Output: A strategy for the mediator that obtains optimal profits.

Without loss of generality, assume that every transaction trades between 𝜏1 and 𝜏 𝑗 for 𝑗 ∈ [2 : 𝑛], i.e., 𝜏1
is the special token.

for each 𝑗 from 2 to 𝑛 do
// Work on the direction 𝜏1 → 𝜏 𝑗.

Let 𝑆1→𝑗 ⊆ [𝑚] be the set of indices 𝑖 such that Batch
𝑖
is in the direction 𝜏1 → 𝜏 𝑗 .

Sort transactions in 𝑆1→𝑗 in an ascending order w.r.t. their exchange rate thresholds (break tie

arbitrarily). Let 𝜋1 be such an order and denote the 𝑘-th transaction in the order as

Batch
𝜋1 (𝑘 ) = (𝜏1 → 𝜏 𝑗 , 𝛿

𝜋1 (𝑘 )
𝜏1 , 𝑟𝜋1 (𝑘 ) ).

Let 𝑘1 ∈ argmax𝑘1∈[ |𝑆1→𝑗 | ]
{(∑

𝑘∈[𝑘1 ] 𝛿
𝜋1 (𝑘 )
𝜏1

)
·
(
𝑝∗
1
− 𝑟𝜋1 (𝑘1 ) · 𝑝∗

𝑗

)}
.

Let profit1 be the value corresponding to 𝑘1.

// Work on the direction 𝜏 𝑗 → 𝜏1.

Let 𝑆 𝑗→1 ⊆ [𝑚] be the set of indices 𝑖 such that Batch
𝑖
is in the direction 𝜏 𝑗 → 𝜏1.

Sort transactions in 𝑆 𝑗→1 in an ascending order w.r.t. their exchange rate thresholds (break tie

arbitrarily). Let 𝜋2 be such an order and denote the 𝑘-th transaction in the order as

Batch
𝜋2 (𝑘 ) = (𝜏 𝑗 → 𝜏1, 𝛿

𝜋2 (𝑘 )
𝜏 𝑗 , 𝑟𝜋2 (𝑘 ) ).

Let 𝑘2 ∈ argmax𝑘2∈[ |𝑆 𝑗→1 | ]
{(∑

𝑘∈[𝑘2 ] 𝛿
𝜋2 (𝑘 )
𝜏 𝑗

)
·
(
𝑝∗
𝑗
− 𝑟𝜋2 (𝑘2 ) · 𝑝∗

1

)}
.

Let Profit2 be the value corresponding to 𝑘2.

if Profit1 ≤ 0 & Profit2 ≤ 0 then
Do nothing.

end
else if Profit1 ≥ Profit2 then

Include all

{
Batch

𝜋1 (𝑘 )
}
𝑘∈[𝑘1 ] transactions;

Insert one mediator’s Batch

(
𝜏 𝑗 → 𝜏1,

(∑
𝑘∈[𝑘1 ] 𝛿

𝜋1 (𝑘 )
𝜏1

)
· 𝑟𝜋1 (𝑘1 ) , 1

𝑟𝜋1 (𝑘1 )

)
.

end
else

Include all

{
Batch

𝜋2 (𝑘 )
}
𝑘∈[𝑘2 ] transactions;

Insert one mediator’s Batch

(
𝜏1 → 𝜏 𝑗 ,

(∑
𝑘∈[𝑘2 ] 𝛿

𝜋2 (𝑘 )
𝜏 𝑗

)
· 𝑟𝜋2 (𝑘2 ) , 1

𝑟𝜋2 (𝑘2 )

)
.

end
end

Proof. Algorithm 1 takes a batch of user transactions that forms a Fisher market and the

exogenous prices as input and outputs a strategy to make the mediator obtain the optimal profits.

It independently processes each pair (𝜏1, 𝜏 𝑗 ) for all 𝑗 ∈ [2 : 𝑛]. For each pair, it decides which user

transactions to select and how to insert its own attacking transaction (including the direction, the

amount of endowment, and the exchange rate threshold).

As the first step, by Lemma 3.11, it suffices for algorithm 1 to work separately on pairs 𝜏1 and 𝜏 𝑗
for every 𝑗 ∈ [2 : 𝑛]. Fix a 𝑗 ∈ [2 : 𝑛] below. By Lemma 3.12, it suffices to consider strategies that

only insert attacking transactions in one direction. So algorithm 1 tries both directions between 𝜏1
and 𝜏 𝑗 and pick the best one. Take the direction 𝜏1 → 𝜏 𝑗 as an example. Again, by Lemma 3.12, we

can throw away all users’ transactions that are for 𝜏1 → 𝜏 𝑗 direction. Now the question reduces to
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the following: Given a set of users’ transactions

{
Batch

𝑖
}
𝑖∈𝑆1→𝑗

such that every Batch
𝑖
is in the

direction 𝜏1 → 𝜏 𝑗 , what is the optimal way for the mediator to select a subset of users’ transactions

and insert its own transactions in the opposite direction, i.e., the 𝜏 𝑗 → 𝜏1 direction?

Obviously, we want to control the final prices to satisfy 𝑝1/𝑝 𝑗 ≤ 𝑝∗
1
/𝑝∗𝑗 (otherwise the mediator

will loss profit), thus we should delete (and ignore) users’ transactions Batch
𝑖
such that 𝑟 𝑖 > 𝑝∗

1
/𝑝∗𝑗 .

Suppose that the final exchange rate is 𝑝1/𝑝 𝑗 = 𝑟 ≤ 𝑝∗
1
/𝑝∗𝑗 , then for each user’s transaction Batch

𝑖

such that 𝑟 𝑖 ≤ 𝑟 , we can obtain profit 𝛿𝑖𝜏1 · (𝑝
∗
1
− 𝑟 · 𝑝∗𝑗 ) ≥ 0. Thus we should include all users’

transactions Batch
𝑖
such that 𝑟 𝑖 ≤ 𝑟 .

Now the correct way to attack them seems ready to come out: sort all user transactions in an

ascending order 𝜋 with respect to their exchange rate thresholds. Then the algorithm enumerates

each involved threshold and calculates the corresponding profit:

Profit(𝑘) = ©­«
∑︁
𝑘 ′∈[𝑘 ]

𝛿
𝜋 (𝑘 ′ )
𝜏1

ª®¬ · (𝑝∗1 − 𝑟𝜋 (𝑘 ) · 𝑝∗𝑗 ), (6)

where 𝑟𝜋 (𝑘 ) is exchange rate threshold of the 𝑘-th user transaction and 𝛿
𝜋 (𝑘 ′ )
𝜏1 is the endowment of

the 𝑘 ′-th transaction in the order 𝜋 . This Profit(𝑘) is obtained by setting the threshold of the 𝑘-th

transaction as the exchange rate in this direction, selecting all user transactions with thresholds no

larger than that, and inserting an attacking transaction in the opposite direction to provide the

exact amount of token 𝜏 𝑗 they need, which is 𝑟𝜋 (𝑘 ) ·
(∑

𝑘 ′∈[𝑘 ] 𝛿
𝜋 (𝑘 ′ )
𝜏1

)
. Let Profit1 and 𝑘1 be the

maximal profit and corresponding index for the direction 𝜏1 → 𝜏 𝑗 . Symmetrically, the algorithm

works on the direction 𝜏 𝑗 → 𝜏1 and obtains the Profit2 and 𝑘2. If both Profit1 and Profit2 are

no larger than 0, we just ignore all user transactions between 𝜋1 and 𝜋 𝑗 and insert no transaction

between them, as neither direction is profitable. Otherwise, choosing the strategy with the highest

profit.

It is easy to verify that all transactions in the batch will be successfully executed. This finishes

the proof.

□

3.5 NP-hardness for Optimal MEV under Arrow-Debreu Market

In this section, we show the computational hardness of finding an optimal MEV strategy when the

user transactions form a general Arrow-Debreu market.

Theorem 3.14. It is NP-hard to compute an optimal strategy to the Batch-MEV problem.

Proof. We reduce the NP-hard Maximum Acyclic Subgraph Problem to our MEV optimization

problem. Recall that an instance of the Maximum Acyclic Subgraph problem contains a directed

graph and asks to find an acyclic subgraph with a maximum number of edges.

Suppose we are given an arbitrary graph 𝐺 = (𝑉 , 𝐸) where 𝑉 is a set of |𝑉 | = 𝑛 vertices and 𝐸

is a set of |𝐸 | = 𝑚 directed edges (there are no multiple edges with the same source and target

nodes). Note that we can decide if a graph is acyclic in polynomial time, and if the graph is acyclic,

we can simply output |𝐸 | as the answer of the given instance of the Maximum Acyclic Subgraph

problem. Thus, without loss of generality, we assume that the graph is not acyclic, which implies

the maximum acyclic subgraph of 𝐺 has 𝑞 < 𝑚 edges.

Then, we construct the MEV optimization problem as follows. For each vertex 𝑣𝑖 ∈ 𝑉 , we

construct a token 𝜏𝑖 and set its exogenous price 𝑝
∗
𝑖 as 1. For each edge (𝑖, 𝑗) ∈ 𝐸, we construct a user

transaction Batch =
(
𝜏𝑖 → 𝜏 𝑗 ,𝑚

𝑚, 1

𝑚𝑚

)
. We refer the constructed instance to

{
Batch

(𝑖, 𝑗 )}
(𝑖, 𝑗 ) ∈𝐸 .

The correctness of this reduction follows from the following two lemmas.
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Lemma 3.15. If the maximum acyclic subgraph of𝐺 has 𝑞 edges, then the mediator’s optimal profit

under the instance

{
Batch

(𝑖, 𝑗 )}
(𝑖, 𝑗 ) ∈𝐸 lies in

[ (
𝑚𝑚 −𝑚𝑚−1) · 𝑞,𝑚𝑚 · 𝑞

]
.

Proof. Given Lemma 3.8, the upper bound proof is easy. Consider any mediator’s strategy

(𝑆,
{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ]) such that the economy graph of

{
Batch

𝑖
}
𝑖∈𝑆 is acyclic, so we have |𝑆 | ≤ 𝑞.

The requirement of acyclic graph is without loss of generality due to Lemma 3.8. For each token in

the instance, its demand under a market equilibrium equals the supply. The mediator’s profit is the

value of received tokens in the final allocation minus the value of its initial endowments, which is

upper bounded by the value of users’ initial endowments, i.e., 1 ·𝑚𝑚 · 𝑞.
The lower bound proof is more involved and we focus on it next.

Assume that 𝐺 ′ = (𝑉 ′, 𝐸′) is a directed acyclic subgraph of 𝐺 that has 𝑞 edges. We construct a

strategy for the mediator that can obtain at least (𝑚𝑚 −𝑚𝑚−1) · 𝑞 profit. The construction is based

on levels of nodes in𝐺 ′
, which we define next. We start with all nodes that have no incoming edges

and label them as level 1; then we (virtually) remove the level-1 node(s) and all edges taking them

as the source node; next, we label all nodes that have no incoming edges as level 2 and repeatedly

process the remaining subgraph with an increasing level (i.e., level 3, 4, · · · ) until all nodes are
labeled. In this way, all selected user transactions start from a token with a lower level and end at a

token with a higher level.

Now we are able to describe the mediator’s strategy: First, the mediator selects all users’

transactions that correspond to edges in 𝐸′. Then for each selected user transaction Batch =(
𝜏𝑖 → 𝜏 𝑗 ,𝑚

𝑚, 1

𝑚𝑚

)
in𝐺 ′

, the mediator inserts an attacking transaction Batch
′
in its opposite direc-

tion, specifically, Batch
′ =

(
𝜏 𝑗 → 𝜏𝑖 ,𝑚

𝑚+𝑙𝑖−𝑙 𝑗 ,𝑚𝑙 𝑗−𝑙𝑖 )
where 𝑙𝑖 is the level of node 𝑖 (i.e., token 𝜏𝑖 ).

The two steps derive an attacking strategy. Next, we prove that these selected user transactions

and newly inserted attacking transactions are executed under equilibrium, and bring a profit no

less than

(
𝑚𝑚 −𝑚𝑚−1) · 𝑞.

Let p be a price vector of tokens in 𝐺 ′
, where token 𝜏𝑖 ’s price 𝑝𝑖 =𝑚

𝑙𝑖
. It is easy to verify that p

is the price equilibrium where the unique allocation is as follows: Each selected user transaction

Batch =
(
𝜏𝑖 → 𝜏 𝑗 ,𝑚

𝑚, 1

𝑚𝑚

)
is executed at the exchange rate𝑚𝑙𝑖−𝑙 𝑗

which is larger than its require-

ment
1

𝑚𝑚 , and receives𝑚𝑚+𝑙𝑖−𝑙 𝑗
amount of token 𝜏 𝑗 ; Each attacking transaction in the opposite

direction Batch
′ =

(
𝜏 𝑗 → 𝜏𝑖 ,𝑚

𝑚+𝑙𝑖−𝑙 𝑗 ,𝑚𝑙 𝑗−𝑙𝑖 )
receives𝑚𝑚 amount of token 𝜏𝑖 , bringing a profit

of𝑚𝑚 −𝑚𝑚+𝑙𝑖−𝑙 𝑗 ≥ 𝑚𝑚 −𝑚𝑚−1
. Combining that we insert 𝑞 attacking transactions in total, the

mediator’s profit is at least by

(
𝑚𝑚 −𝑚𝑚−1) · 𝑞. □

Lemma 3.16. If the mediator’s optimal profit is in

[ (
𝑚𝑚 −𝑚𝑚−1) · 𝑞,𝑚𝑚 · 𝑞

]
, then the number of

edges in the maximum acyclic subgraph of 𝐺 is 𝑞.

Proof. The proof in fact follows from the disjointedness of

[ (
𝑚𝑚 −𝑚𝑚−1) · 𝑞, (𝑚𝑚 − 1) · 𝑞

]
for

different 𝑞. Specifically, we show the upper bound for 𝑞 − 1 interval is strictly smaller than the

lower bound of 𝑞 interval, which follows from the following simple calculation.

𝑞 < 𝑚 ⇒ 𝑚𝑞 − 𝑞 > 𝑚𝑞 −𝑚 ⇒ (𝑚 − 1)𝑞𝑚𝑚−1 > 𝑚(𝑞 − 1)𝑚𝑚−1

⇒
(
𝑚𝑚 −𝑚𝑚−1) · 𝑞 > 𝑚𝑚 · (𝑞 − 1).

□

Overall, deciding which interval the mediator’s optimal profit lies in is equivalent to finding the

size of maximum acyclic subgraph of 𝐺 . So finding an optimal strategy is as hard as solving the

Maximum Acyclic Subgraph Problem, which is NP-hard.

This finishes the proof. □
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3.6 UGC-hard for 1/2-approximate MEV under Arrow-Debreu Markets

The main goal of this section is to strengthen the hardness result above by showing computational

hardness to computing a nearly 1/2-approximate MEV under Arrow-Debreu markets. Notably, the

1/2 threshold implies that the mediator must forgo half of the potential MEV profit. Moreover,

we conjecture that even achieving a 1% approximation remains computationally hard. However,

proving this would require additional techniques, which we discuss further in the final section.

Theorem 3.17. Let 𝜖 ∈ (0, 1/2) be any constant. Assuming unique game conjecture, it is NP-hard

to compute a (1/2 + 𝜖)-approximation to the Batch-MEV problem.

Proof. We still reduce the Maximum Acyclic Subgraph problem to our MEV Optimization

problem. Suppose we are given an arbitrary graph 𝐺 = (𝑉 , 𝐸) where 𝑉 is a set of |𝑉 | = 𝑛 vertices

and 𝐸 is a set of |𝐸 | = 𝑚 directed edges. Again, we assume that 𝐺 is not acyclic. We recall the

hardness-of-approximation result for the Maximum Acyclic Subgraph problem.

Theorem 3.18 ([14]). Let 𝜖1 ∈ (0, 1/2) be any constant. Assuming the Unique Game Conjecture, it

is NP-hard to compute a (1/2 + 𝜖1)-approximation to the Maximum Acyclic Subgraph problem.

We construct the MEV optimization problem in the same way as in the proof of Theorem 3.14:

For each vertex 𝑣𝑖 ∈ 𝑉 , we construct a token 𝜏𝑖 and set its exogenous price 𝑝∗𝑖 as 1; for each edge

(𝑖, 𝑗) ∈ 𝐸, we construct a user transaction Batch =
(
𝜏𝑖 → 𝜏 𝑗 ,𝑚

𝑚, 1

𝑚𝑚

)
. We refer the constructed

instance to

{
Batch

(𝑖, 𝑗 )}
(𝑖, 𝑗 ) ∈𝐸 .

Assume that𝑚 is sufficiently large. Let 𝜖1 be a constant such that 1/2 + 𝜖1 < (1/2 + 𝜖) (1 − 1

𝑚
).

Theorem 3.17 follows from the claim that if one can find a (1/2+𝜖)-approximation to theBatch-MEV

problem, then we can extract a (1/2+𝜖1)-approximation to the MaximumAcyclic Subgraph problem

in polynomial time. To this end, we show the following lemma.

Lemma 3.19. For any strategy (𝑆,
{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ]), if the mediator can obtain profitU, then

we can extract an acyclic subgraph of 𝐺 which has at least U/𝑚𝑚 edges.

Proof. Note that we can assume the given strategy (𝑆,
{
Batch

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ]) satisfies that the

selected user transactions form an acyclic cycle by Lemma 3.8. If not, we can use the strategy

given in Lemma 3.8 to purify it and guarantee that under the new strategy, the profit is at least U.

Furthermore, this can clearly be done in polynomial time. So we assume that 𝑆 forms an acyclic

cycle. By Lemma 3.15, we know that U ≤ |𝑆 | ·𝑚𝑚 . □

Let 𝑞 be the number of edges in a maximum acyclic subgraph of 𝐺 . Then by Lemma 3.15,

we know the optimal MEV is at least (𝑚𝑚 − 𝑚𝑚−1) · 𝑞. If we have a strategy that can obtain

(1/2 + 𝜖)-approximate MEV, then such a strategy can obtain (1/2 + 𝜖) (𝑚𝑚 −𝑚𝑚−1) · 𝑞 profits.

Combining with Lemma 3.19, we know that we can extract an acyclic subgraph with at least

(1/2 + 𝜖)𝑞 · 𝑚𝑚−𝑚𝑚−1

𝑚𝑚 = (1/2 + 𝜖)𝑞 · (1 − 1

𝑚
) ≥ (1/2 + 𝜖1) · 𝑞 edges.

This finishes the proof. □

4 Hard to Approximate MEV in Constant Function Market Makers

In this section, we study the computation of approximating MEV in CFMMs. It is well known that

the outcomes of transactions executed on CFMMs are sensitive to transaction-ordering attacks,

which leaves space for a mediator (e.g., miner, validator) to extract profits. We start by formalizing

the CFMM and the execution of transactions.
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4.1 CFMMs Formalization and Execution of Transactions

We consider a CFMM 𝐴 for two types of tokens X,Y ∈ {𝜏1, · · · , 𝜏𝑛}, where we use 𝑠 = (𝑥,𝑦) as a
state of 𝐴 that represents the current reserves of tokens X and Y. The trading invariant can be

modeled by a constant function on two variables 𝐹 (𝑥,𝑦). Throughout this section, we will only
consider the Swap-like transactions, and there is no deposit or redemption of liquidity, so sometimes

we equivalently use 𝑠 = (𝑥,𝑦) ∈ 𝐹 to represent a reserving point on the curve 𝐹 (·, ·). We assume

two natural properties about these constant functions: (1) for any two points (𝑥,𝑦), (𝑥 ′, 𝑦′) ∈ 𝐹 , we
have 𝑥 > 𝑥 ′ ⇔ 𝑦 < 𝑦′, namely, when the reserve of X increases, the reserve of Y decreases and

vice versa; (2) 𝐹 (𝑥,𝑦) is differentiable and the marginal exchange rate

��� 𝜕𝐹/𝜕𝑥𝜕𝐹/𝜕𝑦

��� is decreasing with
respect to 𝑥 . We note that most CFMMs satisfy these two properties, including Uniswap v2 and v3.

Finally, we denote the fraction of the swap fee in AMM 𝐴 by 𝑓 ∈ [0, 1).
From the two properties above, we know that for any 𝑥 , there is exactly one𝑦 such that (𝑥,𝑦) ∈ 𝐹

and vice versa. So for simplicity of notations, we use 𝐹𝑦 (𝑥) to denote that 𝑦 such that (𝑥,𝑦) ∈ 𝐹
and similarly define 𝐹𝑥 (𝑦).
Suppose we are given a set of Swap transactions {Swap1, · · · , Swap𝑚} on AMM 𝐴, where each

Swap
𝑖 = (𝛿X, 𝑟 ) or Swap𝑖 = (𝛿Y, 𝑟 ). Without any ambiguity, we omit the swapping direction in this

section and use the shortened notation Swap
𝑖 (𝛿X, 𝑟 ) to represent that the 𝑖-th transaction Swap

𝑖

would like to sell 𝛿X amount of token X to obtain at least 𝛿X · 𝑟 amount of Y, i.e., with 𝑟 as the

lowest acceptable exchange rate. The meaning of Swap
𝑖 (𝛿Y, 𝑟 ) is analogous.

Pick an arbitrary permutation 𝜋 : [𝑚] → [𝑚] as the execution order of all these 𝑚 trans-

actions and let 𝑠0 = (𝑥0, 𝑦0) be the initial state of 𝐴 before processing these transactions. The

execution works as follows: Consider the 𝑖-th round and Swap
𝜋 (𝑖 ) = (𝛿X, 𝑟 ). Let Δ := 𝐹𝑦 (𝑥𝑖−1) −

𝐹𝑦 (𝑥𝑖−1 + (1 − 𝑓 )𝛿X). If the condition Δ ≥ 𝛿X · 𝑟 holds, then this swap is successfully executed and

𝑠𝑖 =
(
𝑥𝑖−1 + (1 − 𝑓 )𝛿X, 𝐹𝑦 (𝑥𝑖−1 + (1 − 𝑓 )𝛿X)

)
; otherwise, the transaction fails and 𝑠𝑖 = 𝑠𝑖−1. The

case where Swap
𝜋 (𝑖 ) = (𝛿Y, 𝑟 ) can be defined similarly.

4.2 MEV Optimization Problem

In this subsection, we formalize the mediator’s strategies and define its strategy space. Intuitively,

a mediator can potentially delete some users’ transactions, insert its own transactions, and pick an

arbitrary order of execution of the selected transactions.

Definition 4.1 (Strategy Space). Given a set of users’ transactions

{
Swap

𝑖
}
𝑖∈[𝑚] and an initial state

𝑠0 = (𝑥0, 𝑦0), a mediator could create 𝑘 its own transactions

{
Swap

𝑖
}
𝑖∈[𝑚+1:𝑚+𝑘 ] , select a subset of

users’ transactions 𝑆 ⊆ [𝑚], and pick an execution order (a permutation) over all these transactions

𝜋 : [|𝑆 ∪ [𝑚 + 1 :𝑚 + 𝑘] |] → 𝑆 ∪ [𝑚 + 1 :𝑚 + 𝑘].

Definition 4.2 (Utility Function). Mediator’s profit𝑈 ({Swap𝑖 }𝑖∈[𝑚+1:𝑚+𝑘 ], 𝑆, 𝜋) is defined as∑︁
𝑖∈[ |𝑆 |+𝑘 ],𝜋 (𝑖 ) ∈ [𝑚+1:𝑚+𝑘 ]

𝑥𝑖−1 − 𝑥𝑖
1 − 𝑓 · 1{𝑥𝑖>𝑥𝑖−1 }

· 𝑝∗𝑥 +
𝑦𝑖−1 − 𝑦𝑖

1 − 𝑓 · 1{𝑦𝑖>𝑦𝑖−1 }
· 𝑝∗𝑦, (7)

where 𝑝∗𝑥 and 𝑝
∗
𝑦 are exogenous (or say, off-chain) prices of X and Y respectively.

This definition generalizes the idea of sandwich attack and can capture a wide range of order

manipulation attacks. Next we formalize the computational problem associated with it.

Definition 4.3 (CFMM-MEV). The CFMM-MEV problem refers to the following computational

problem: Given user transactions

{
Swap

𝑖
}
𝑖∈[𝑚] and an initial state 𝑠0 = (𝑥0, 𝑦0), compute a strategy

({Swap𝑖 }𝑖∈[𝑚+1:𝑚+𝑘 ], 𝑆, 𝜋) that achieves the optimal revenue. For 𝑐 ∈ (0, 1), we say a strategy is
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a 𝑐-approximation to CFMM-MEV if the strategy obtains at least 𝑐-fraction of the optimal MEV

revenue.

4.3 Computational Hardness

Recall that in literature many excellent works studied the same or similar attack, with specific

focus on empirical approaches [10, 24, 33, 34], or special cases (e.g., no swap fee [3] or attacking

one user’s transaction [15]), but no polynomial time algorithm for the general setting is known.

This is not a coincidence, as what we are going to show in this section.

In particular, as our main theorem in this section, we show that computing even a 0.01%-

approximation to CFMM-MEV is NP-hard when 𝑓 > 0 is any constant (say 𝑓 = 0.3%), which is

what happens in the real blockchain world. This indicates that if one wants to attract optimal

MEV, it is necessary to design heuristic algorithms, but not hope for a theoretically efficient even

approximation algorithm.

Theorem 4.4. Let 𝜖, 𝑓 ∈ (0, 1) be any universal constants. It is NP-hard to compute an 𝜖-approximation

to the CFMM-MEV problem, even with the constant function 𝐹 (𝑥,𝑦) = 𝑥𝑦 (i.e., Uniswap v2).

Due to space constraints, we postpone the proof to the appendix.

5 Discussion and Open Problems

We primarily focus on MEV issues in Batch Auctions, as they have received relatively less attention.

Additionally, the approximation of CFMM-MEV has been essentially resolved.

Stronger Hardness of Approximation for Batch Auctions. As discussed earlier, we conjecture that even

achieving a 1%-approximation for the Batch-MEV problem remains computationally hard under

standard complexity assumptions, such as P≠NP and the Unique Games Conjecture. However,

our current reduction is based on the Maximum Acyclic Subgraph problem, which admits a very

simple 1/2-approximation algorithm (see [14]). This suggests that new techniques are necessary to

establish stronger hardness of approximation results. Notably, Lemma 3.8 highlights the attacker’s

need to identify an acyclic subgraph within the economy graph. While this provides a useful

structural insight, further properties of Batch Auctions could be leveraged to reinforce the hardness

results.

Market Equilibrium Manipulation. We provided a polynomial-time algorithm to attack a set of

transactions that form a Fisher market. It is also possible to study the same market equilibrium

manipulation problem for the general linear markets (where the utility functions may have more

than two non-zero coefficients). In particular, we are curious if our ideas could be extended to

general linear Fisher markets to obtain a polynomial-time optimal-attack algorithm. If so, this

could be a new point of view about the fundamental differences between Fisher markets and

Arrow-Debreu markets.

Empirical MEV on Batch Auctions. The theoretical results of computational complexity are fun-

damental, but our interest of course extends to practical environments MEV, as batch auctions

are happening in blockchain everyday with incredible volumes. The possibilities of novel MEV

behaviors in batch auctions have not been discussed by the community before, and it is totally

possible to design heuristic algorithms to extract MEV. This is beyond the scope of the current

work, but we are expecting emerging works related to MEV in batch auctions in the near future.



Mengqian Zhang, Yuhao Li, Xinyuan Sun, Elynn Chen, and Xi Chen 19

Acknowledgments

Xi Chen would like to thank the support from NSF IIS-1845444. Elynn Chen’s research is supported

in part by the NSF Award DMS-2412577. Yuhao Li is supported by NSF grants IIS-1838154, CCF-

2106429, and CCF-2107187. The authors are grateful to anonymous reviewers for helping them

improve the paper and to Sen Yang for his generous help with the empirical studies.

References

[1] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson. 2021. Uniswap v3 core. Tech. rep.,

Uniswap, Tech. Rep. (2021). https://uniswap.org/whitepaper-v3.pdf

[2] Kenneth J Arrow and Gerard Debreu. 1954. Existence of an equilibrium for a competitive economy. Econometrica:

Journal of the Econometric Society (1954), 265–290.

[3] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. 2022. Maximizing Extractable Value from

Automated Market Makers. In Financial Cryptography (Lecture Notes in Computer Science, Vol. 13411). Springer, 3–19.

[4] Eric Budish, Peter Cramton, and John Shim. 2015. The high-frequency trading arms race: Frequent batch auctions as a

market design response. The Quarterly Journal of Economics 130, 4 (2015), 1547–1621.

[5] Andrea Canidio and Robin Fritsch. 2023. Arbitrageurs’ profits, LVR, and sandwich attacks: batch trading as an AMM

design response. arXiv preprint arXiv:2307.02074 (2023).

[6] Andrea Canidio and Robin Fritsch. 2023. Batching trades on automated market makers. In 5th Conference on Advances

in Financial Technologies (AFT 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik.

[7] TH Chan, Ke Wu, and Elaine Shi. 2024. Mechanism Design for Automated Market Makers. arXiv preprint

arXiv:2402.09357 (2024).

[8] Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. 2017. The Complexity of Non-Monotone Markets. J. ACM 64, 3

(2017), 20:1–20:56. https://doi.org/10.1145/3064810

[9] Bruno Codenotti, Amin Saberi, Kasturi Varadarajan, and Yinyu Ye. 2006. Leontief economies encode nonzero sum

two-player games. In SODA, Vol. 6. 659–667.

[10] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and Ari Juels.

2020. Flash Boys 2.0: Frontrunning in Decentralized Exchanges, Miner Extractable Value, and Consensus Instability.

In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 910–927.

https://doi.org/10.1109/SP40000.2020.00040

[11] Flashbots. February 8th 2025. Cowswap Solver Metrics. https://dune.com/flashbots/cowswap-solver-metrics

[12] David Gale. 1976. The linear exchange model. Journal of Mathematical economics 3, 2 (1976), 205–209.

[13] Tivas Gupta, MalleshM. Pai, andMax Resnick. 2023. The Centralizing Effects of Private Order Flow on Proposer-Builder

Separation. In AFT (LIPIcs, Vol. 282). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 20:1–20:15.

[14] Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. 2008. Beating the random ordering is hard:

Inapproximability of maximum acyclic subgraph. In 2008 49th Annual IEEE Symposium on Foundations of Computer

Science. IEEE, 573–582.

[15] Lioba Heimbach and Roger Wattenhofer. 2022. Eliminating Sandwich Attacks with the Help of Game Theory. In ASIA

CCS ’22: ACM Asia Conference on Computer and Communications Security, Nagasaki, Japan, 30 May 2022 - 3 June 2022,

Yuji Suga, Kouichi Sakurai, Xuhua Ding, and Kazue Sako (Eds.). ACM, 153–167. https://doi.org/10.1145/3488932.3517390

[16] Subhash Khot. 2002. On the power of unique 2-prover 1-round games. In Proceedings of the thiry-fourth annual ACM

symposium on Theory of computing. 767–775.

[17] Kshitij Kulkarni, Theo Diamandis, and Tarun Chitra. 2023. Routing MEV in Constant Function Market Makers. In

International Conference on Web and Internet Economics. Springer, 456–473.

[18] Yuhao Li, Mengqian Zhang, Jichen Li, Elynn Chen, Xi Chen, and Xiaotie Deng. 2023. MEV Makes Everyone Happy

under Greedy Sequencing Rule. In Proceedings of the 2023 Workshop on Decentralized Finance and Security, DeFi 2023,

Copenhagen, Denmark, 30 November 2023, Kaihua Qin and Fan Zhang (Eds.). ACM, 9–15. https://doi.org/10.1145/

3605768.3623543

[19] Zihao Li, Jianfeng Li, Zheyuan He, Xiapu Luo, Ting Wang, Xiaoze Ni, Wenwu Yang, Xi Chen, and Ting Chen.

2023. Demystifying DeFi MEV Activities in Flashbots Bundle. In Proceedings of the 2023 ACM SIGSAC Conference

on Computer and Communications Security, CCS 2023, Copenhagen, Denmark, November 26-30, 2023, Weizhi Meng,

Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda (Eds.). ACM, 165–179. https://doi.org/10.1145/3576915.

3616590

[20] Robert R Maxfield. 1997. General equilibrium and the theory of directed graphs. Journal of Mathematical Economics 27,

1 (1997), 23–51.

https://uniswap.org/whitepaper-v3.pdf
https://doi.org/10.1145/3064810
https://doi.org/10.1109/SP40000.2020.00040
https://dune.com/flashbots/cowswap-solver-metrics
https://doi.org/10.1145/3488932.3517390
https://doi.org/10.1145/3605768.3623543
https://doi.org/10.1145/3605768.3623543
https://doi.org/10.1145/3576915.3616590
https://doi.org/10.1145/3576915.3616590


Mengqian Zhang, Yuhao Li, Xinyuan Sun, Elynn Chen, and Xi Chen 20

[21] Lionel McKenzie. 1954. On equilibrium in Graham’s model of world trade and other competitive systems. Econometrica:

Journal of the Econometric Society (1954), 147–161.

[22] Jason Milionis, Ciamac C Moallemi, Tim Roughgarden, and Anthony Lee Zhang. 2022. Automated market making and

loss-versus-rebalancing. arXiv preprint arXiv:2208.06046 (2022).

[23] Alexandre Obadia, Alejo Salles, Lakshman Sankar, Tarun Chitra, Vaibhav Chellani, and Philip Daian. 2021. Unity is

Strength: A Formalization of Cross-Domain Maximal Extractable Value. CoRR abs/2112.01472 (2021). arXiv:2112.01472

https://arxiv.org/abs/2112.01472

[24] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying Blockchain Extractable Value: How dark is the forest?.

In 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022. IEEE, 198–214.

https://doi.org/10.1109/SP46214.2022.9833734

[25] Geoffrey Ramseyer, Ashish Goel, and David Mazières. 2023. SPEEDEX: A Scalable, Parallelizable, and Economically

Efficient Decentralized EXchange. In 20th USENIX Symposium on Networked Systems Design and Implementation, NSDI

2023, Boston, MA, April 17-19, 2023, Mahesh Balakrishnan and Manya Ghobadi (Eds.). USENIX Association, 849–875.

https://www.usenix.org/conference/nsdi23/presentation/ramseyer

[26] Geoffrey Ramseyer, Mohak Goyal, Ashish Goel, and David Mazières. 2024. Augmenting batch exchanges with constant

function market makers. In Proceedings of the 25th ACM Conference on Economics and Computation. 986–1016.

[27] Jan Christoph Schlegel, Mateusz Kwasnicki, and Akaki Mamageishvili. 2023. Axioms for Constant Function Market

Makers. In EC. ACM, 1079.

[28] Cowswap Team. Feb 8th 2025. Cow Protocol Overview. https://docs.cow.fi/

[29] Christof Ferreira Torres, Ramiro Camino, and Radu State. 2021. Frontrunner Jones and the Raiders of the Dark Forest:

An Empirical Study of Frontrunning on the Ethereum Blockchain. In 30th USENIX Security Symposium, USENIX

Security 2021, August 11-13, 2021, Michael D. Bailey and Rachel Greenstadt (Eds.). USENIX Association, 1343–1359.

https://www.usenix.org/conference/usenixsecurity21/presentation/torres

[30] Ye Wang, Yan Chen, Haotian Wu, Liyi Zhou, Shuiguang Deng, and Roger Wattenhofer. 2022. Cyclic Arbitrage in

Decentralized Exchanges. In Companion of The Web Conference 2022, Virtual Event / Lyon, France, April 25 - 29, 2022,

Frédérique Laforest, Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis, Ivan Herman, and Lionel

Médini (Eds.). ACM, 12–19. https://doi.org/10.1145/3487553.3524201

[31] Sen Yang, Kartik Nayak, and Fan Zhang. 2024. Decentralization of Ethereum’s Builder Market. arXiv preprint

arXiv:2405.01329 (2024).

[32] Mengqian Zhang, Sen Yang, and Fan Zhang. 2024. RediSwap: MEV Redistribution Mechanism for CFMMs. arXiv

preprint arXiv:2410.18434 (2024).

[33] Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur Gervais. 2021. On the Just-In-Time Discovery

of Profit-Generating Transactions in DeFi Protocols. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San

Francisco, CA, USA, 24-27 May 2021. IEEE, 919–936. https://doi.org/10.1109/SP40001.2021.00113

[34] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc Viet Le, and Arthur Gervais. 2021. High-Frequency Trading on

Decentralized On-Chain Exchanges. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA,

24-27 May 2021. IEEE, 428–445. https://doi.org/10.1109/SP40001.2021.00027

https://arxiv.org/abs/2112.01472
https://arxiv.org/abs/2112.01472
https://doi.org/10.1109/SP46214.2022.9833734
https://www.usenix.org/conference/nsdi23/presentation/ramseyer
https://docs.cow.fi/
https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://doi.org/10.1145/3487553.3524201
https://doi.org/10.1109/SP40001.2021.00113
https://doi.org/10.1109/SP40001.2021.00027


Mengqian Zhang, Yuhao Li, Xinyuan Sun, Elynn Chen, and Xi Chen 21

Fig. 1. An illustration of the reduction in the proof of Theorem 4.4. The dark line means 𝑥-axis which represents
the reserved amount of X tokens. Light blue shadow means the “arbitrage-free” interval [𝑥ℓ , 𝑥𝑟 ], where
any mediator’s transaction cannot obtain profits if the execution state is in this interval due to the trade
fees. The orange arrows represent the set of X → Y users’ transactions; they satisfy that starting from the
initial state, after executing all these transactions, the state remains in the arbitrage-free interval (so that
the mediator can never back-run them for profits). The purple arrow represents the only user’s Y → X
transaction (which is the source where the mediator could potentially obtain profits by back-running), and
the purple dotted line represents the state that exactly satisfies its slippage tolerance. The left green part is
where the mediator can potentially back-run and obtain profits. We design the purple transaction such that
the following holds: If there is a subset of transactions, after executing them, the state of the pool can reach
precisely the purple dotted line, then the mediator can obtain non-trivial profits indicated by the green area;
otherwise, the mediator cannot obtain any profits. The reduction uses the idea that the orange transactions
can encode any instance of the Partition problem. The formal reasoning is shown in the proof of Theorem 4.4.

A Proof of Theorem 4.4

We first include a simple observation that can help us simplify the notations.

Observation 1 (No-Deleting in AMMs). Given any set of users’ transactions

{
Swap

𝑖
}
𝑖∈[𝑚] and

an initial state 𝑠0 = (𝑥0, 𝑦0), it is without loss of generality to assume that the strategy satisfies

𝑆 = [𝑚], i.e., the mediator will always select the full set of transactions.

Proof. The proof is easy. For mediator’s transactions, it can always create the transactions that

it needs. For the users’ transactions, if the mediator didn’t select some users’ transactions in a

strategy, it can also equivalently put them at the very end of the sequence, and it will not affect the

mediator’s profits. □

From Observation 1, we may omit the parameter 𝑆 for simplicity of notations.

Theorem 4.4. Let 𝜖, 𝑓 ∈ (0, 1) be any universal constants. It is NP-hard to compute an 𝜖-approximation

to the CFMM-MEV problem, even with the constant function 𝐹 (𝑥,𝑦) = 𝑥𝑦 (i.e., Uniswap v2).

Proof. We reduce the NP-hard Partition problem to our problem. Recall that an instance of the

Partition problem contains𝑚 positive integers {𝑐1, · · · , 𝑐𝑚} and asks if it can be partitioned into

two subsets 𝑆1, 𝑆2 ⊆ [𝑚] with 𝑆1 ∩ 𝑆2 = ∅ and 𝑆1 ∪ 𝑆2 = [𝑚] such that the sum of numbers in 𝑆1
equals that in 𝑆2, i.e.,

∑
𝑖∈𝑆1 𝑐𝑖 =

∑
𝑖∈𝑆2 𝑐𝑖 =

1

2

∑
𝑖∈[𝑚] 𝑐𝑖 .

Suppose that we are given an arbitrary set of𝑚 positive integers {𝑐1, · · · , 𝑐𝑚} such that the sum

of all 𝑐𝑖 ’s is an even number (otherwise, the answer to the Partition problem is obviously “no”).

To start the reduction, we will construct a CFMM, a set of uses’ transactions

{
Swap

𝑖
}
, and an

initial state. Concretely, it suffices for us to use the product function 𝐹 (𝑥,𝑦) = 𝑥𝑦 (other CFMMs that

satisfy our two properties defined in Section 4 will also work). Let the external prices 𝑝∗𝑥 = 𝑝∗𝑦 = 1,
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and the initial state 𝑠0 = (𝑥0, 𝑦0) be such that 𝑥0 = 𝑦0. Note that
𝜕𝐹/𝜕𝑥
𝜕𝐹/𝜕𝑦 = 𝑝∗𝑥/𝑝∗𝑦 . We will have𝑚 + 1

users’ transactions;𝑚 of them will be Swap(X → Y), namely, they are trying to sell X to obtain

Y, and the last one will be Swap(Y → X).
Let 𝑥𝑟 be such that

𝜕𝐹𝑦 (𝑥𝑟 )
𝜕𝑥

=
(1−𝑓 )𝑝∗𝑥
𝑝∗𝑦

and 𝑥ℓ be such that

𝜕𝐹𝑦 (𝑥ℓ )
𝜕𝑥

=
𝑝∗𝑥

(1−𝑓 )𝑝∗𝑦 . Note that these two

points correspond to the two endpoints of the “non-arbitrage” interval.

Let𝐾 be the smallest positive integer such that

∑
𝑖∈[𝑛] 𝑐𝑖/𝐾 < 𝑥𝑟 −𝑥0. Then we let {𝑑1, · · · , 𝑑𝑚} =

{𝑐1/𝐾, · · · , 𝑐𝑚/𝐾} and 𝑡 = 1

2

∑
𝑖∈[𝑚] 𝑑𝑖 . Our problem is still to decide whether there exists 𝑆1 ⊆ [𝑚]

such that

∑
𝑖∈𝑆1 𝑑𝑖 = 𝑡 . Obviously this doesn’t change the original problem, but makes it easier for

us to finish the reduction.

Let 𝑥∗ = 𝑥0 + 𝑡 . We first construct the user transaction Swap
𝑚+1 = (Y → X, 𝛿𝑦), namely, the

only Swap(Y → X) transaction. Both parameters 𝛿𝑦 and the exchange ratio threshold are very

crucial, and they are defined as follows.

We let

𝛿𝑦 = (𝐹𝑦 (𝑥ℓ ) − 𝐹𝑦 (𝑥∗) + 𝜂)/(1 − 𝑓 )
with a sufficiently small number 𝜂 (to be specified later) and the exchange ratio threshold to be

𝑟 =
𝑥∗ − 𝐹𝑥 ((1 − 𝑓 )𝛿𝑦 + 𝐹𝑦 (𝑥∗))

𝛿𝑦
.

Intuitively, these two parameters work as follows: (⋄) the exchanged ratio threshold guarantees

that the transaction Swap
𝑚+1

can be executed at some state 𝑠 = (𝑥,𝑦) if and only if 𝑥 ≥ 𝑥∗; and (△)
the parameter 𝛿𝑦 guarantees that after the transaction Swap

𝑚+1
is successfully executed, the new

state 𝑠′ = (𝑥 ′, 𝑦′) satisfies that 𝑦′ − 𝐹𝑦 (𝑥ℓ ) ≤ 𝜂.

We then construct 𝑚 users’ transactions

{
Swap

𝑖
}
𝑖∈[𝑚] , where each Swap

𝑖 = (X → Y, 𝛿X =

𝑑𝑖/(1 − 𝑓 )) (we’ll specify the thresholds of exchange ratios of these transactions later; they will

also be crucial). Intuitively, this construction means if we only execute users’ transactions, then

we can reach the state 𝑠∗ = (𝑥∗, 𝐹𝑦 (𝑥∗)) if and only if there exists 𝑆1 ⊆ [𝑚] such that

∑
𝑖∈𝑆1 𝑑𝑖 = 𝑡 ,

which corresponds to the answer to the given instance of the Partition problem.

For each transaction Swap
𝑖
for 𝑖 ∈ [𝑚], we set the threshold of exchange ratio to be

𝐹𝑦 (𝑥∗ − 𝑑𝑖 ) − 𝐹𝑦 (𝑥∗)
𝑑𝑖/(1 − 𝑓 )

.

Intuitively, this means if a user’s transaction Swap
𝑖
is executed at state 𝑠 = (𝑥,𝑦), then the Swap(𝛿X)

is successfully executed if and only if 𝑥 ≤ 𝑥∗ − 𝑑𝑖 . Equivalently, after successfully executing any

user’s transaction, the state 𝑠′ = (𝑥 ′, 𝑦′) satisfies 𝑥 ′ ≤ 𝑥∗ . (★)

This finishes the construction of an instance of the CFMM-MEV problem. An intuitive illustration

of the construction is presented in Figure 1. Next, we show that if a mediator can find an 𝜖-

approximation to the CFMM-MEV problem, then it can solve the given Partition instance.

To this end, we define the mediator’s (ideal) maximal MEV as follows (recall that 𝑥ℓ is such that

𝜕𝐹𝑦 (𝑥ℓ )
𝜕𝑥

=
𝑝∗𝑦

(1−𝑓 )𝑝∗𝑥 ):

IDL = 𝜂 · 𝑝∗𝑦 −
𝑥ℓ − 𝐹𝑥 (𝐹𝑦 (𝑥ℓ ) + 𝜂)

1 − 𝑓 · 𝑝∗𝑥 .

This value corresponds to the arbitrage value starting from the state (·, 𝐹𝑦 (𝑥ℓ ) + 𝜂) to the state

(·, 𝐹𝑦 (𝑥ℓ )). (We omit the 𝑥 part for convenience since 𝑦 can determine the state of the pool.)

We set 𝜂 to be sufficiently small such that IDL <
𝑓

(1−𝑓 )𝐾 . The correctness of our reduction follows

from the next lemma.
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Lemma A.1. If there exists 𝑆1 such that

∑
𝑖∈𝑆1 𝑑𝑖 = 𝑡 , then the mediator’s profit is at least IDL;

otherwise, the mediator’s best profit is 0.

The reason that this lemma implies the correctness of the reduction is as follows. If an 𝜖-

approximation has profits larger than 0, then it must be the case that there exists 𝑆1 such that∑
𝑖∈𝑆1 𝑑𝑖 = 𝑡 ; if an 𝜖-approximation has profits 0, it must be the case that there does not exist 𝑆1

such that

∑
𝑖∈𝑆1 𝑑𝑖 = 𝑡 .

We provide the proof of Lemma A.1.

Proof of Lemma A.1. One direction is relatively easy: If there exists 𝑆1 such that

∑
𝑖∈𝑆1 𝑑𝑖 = 𝑡 ,

then the mediator can obtain IDL profits. The strategy is as follows:

(1) Execute users’ transactions Swap
𝑖
for all 𝑖 ∈ 𝑆1 (under arbitrary order);

(2) Execute the user’s transaction Swap
𝑚+1

;

(3) Execute one mediator’s transaction Swap(X → Y, 𝛿𝑥 = (𝑥ℓ − 𝐹𝑥 (𝐹𝑦 (𝑥ℓ ) +𝜂))/(1− 𝑓 ), 𝑟 = 0).
It is easy to verify that mediator’s profits equal IDL.
The other direction is more involved. We will show that if there doesn’t exist 𝑆1 such that∑
𝑖∈𝑆1 𝑑𝑖 = 𝑡 , then for any mediator’s strategy, we have𝑈 ({Swap𝑖 }𝑖∈[𝑚+2:𝑚+1+𝑘 ], 𝜋) ≤ 0.

Fix arbitrary strategy ({Swap𝑖 }𝑖∈[𝑚+2:𝑚+1+𝑘 ], 𝜋). Without loss of generality, we assume that all

transactions

{
Swap

𝜋 (𝑖 )}
𝑖∈[𝑚′ ] for some𝑚′ ∈ [𝑚 + 1 + 𝑘] are successfully executed (otherwise we

can put these transactions at the back and mediator’s profits stay the same). We define a potential

function of state𝜓 : {𝑠}𝑠∈𝐹 → R as follows (recall that 𝑥∗ = 𝑥0 + 𝑡 ):

𝜓 (𝑥,𝑦) =


(𝑥 − 𝑥𝑟 ) · 𝑝∗𝑥 +
𝑦−𝐹𝑦 (𝑥𝑟 )

1−𝑓 · 𝑝∗𝑦, 𝑥 > 𝑥𝑟 ;
𝑥−𝑥ℓ
1−𝑓 · 𝑝∗𝑥 +

(
𝑦 − 𝐹𝑦 (𝑥ℓ )

)
· 𝑝∗𝑦, 𝑥 < 𝑥ℓ ;

0, 𝑥 ∈ [𝑥ℓ , 𝑥𝑟 ] .

Let 𝑠𝑖 be the state that is after executing transaction Swap
𝜋 (𝑖 )

and𝑈𝑖 denote the mediator’s profit

after executing 𝑖-th transaction. Let 𝑖∗ be the index with 𝜋 (𝑖∗) =𝑚 + 1, i.e., the user’s transaction

Swap
𝑚+1 (Y → X). We will inductively show that after executing 𝑖-th transaction, the profit of the

mediator

𝑈𝑖 +𝜓 (𝑠𝑖 ) ≤ 𝑈𝑖−1 +𝜓 (𝑠𝑖−1)
for all 𝑖 ∈ [𝑖∗ − 1]. Note that at the beginning of 𝑠0, we have𝑈0 = 0 and𝜓 (𝑠0) = 0. Now let’s move

to the induction step and consider any 𝑖 ∈ [𝑖∗ − 1].
Case 1: Swap𝜋 (𝑖 ) is a user’s transaction. By the observation mentioned above, we know that

Swap
𝜋 (𝑖 )

is successfully executed. Due to the thresholds of exchange ratios we constructed, we

know that 𝑥𝑖 ≤ 𝑥∗ (recall (★) above). Combining with 𝑥∗ ≤ 𝑥𝑟 , this means𝜓 (𝑠𝑖 ) ≤ 𝜓 (𝑠𝑖−1). Note
also that executing a user’s transaction doesn’t affect mediators’ profit. So we have 𝑈𝑖 = 𝑈𝑖−1. To
conclude, we have𝑈𝑖 +𝜓 (𝑠𝑖 ) ≤ 𝑈𝑖−1 +𝜓 (𝑠𝑖−1).
Case 2: Swap𝜋 (𝑖 ) is a mediator’s transaction. In this case, 𝑈𝑖 +𝜓 (𝑠𝑖 ) ≤ 𝑈𝑖−1 +𝜓 (𝑠𝑖−1) directly

follows from the definition of𝜓 function.

This finishes the induction. Thus, we conclude that𝑈𝑖∗−1 +𝜓 (𝑠𝑖∗−1) ≤ 𝑈0 +𝜓 (𝑠0) = 0. Note that

𝜓 (𝑠) ≥ 0 for all 𝑠 ∈ 𝐹 , so we can conclude that𝑈𝑖∗−1 ≤ 0.

Importantly, if all transactions

{
Swap

𝜋 (1) , · · · , Swap𝜋 (𝑖∗−1)
}
are users’ transactions, then we

have 𝑥0 ≤ 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑖∗−1 ≤ 𝑥∗ − 1/𝐾 . This follows from our condition from the very

beginning that there doesn’t exist 𝑆1 ⊂ [𝑚] such that

∑
𝑖∈𝑆1 𝑑𝑖 = 𝑡 . If this is the case, then Swap

𝜋 (𝑖∗ )

will not be able to be executed successfully due to (⋄) and mediator will not get any profit. Intuitively,

Swap
𝜋 (𝑖∗ )

is the only transaction where mediator can extract some profits. So to make Swap
𝜋 (𝑖∗ )

successfully executed, it has to be the case 𝑥𝑖∗−1 ≥ 𝑥∗, which means there are some mediator’s
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transaction in

{
Swap

𝜋 (𝑖 )}
𝑖∈[𝑖∗−1] . In particular, the cumulative amount ofX token that the mediator

puts in the pool is at least 1/𝐾 . Thus the mediator has the cost for the swap fee at least
𝑓

(1−𝑓 )𝐾 .

So under the nontrivial case that Swap
𝑚+1

is successfully executed (i.e., 𝑥𝑖∗−1 ≥ 𝑥∗), we have

𝑈𝑖∗−1 ≤ − 𝑓

(1−𝑓 )𝐾 . Since the 𝑖
∗
-th transaction is user’s transaction, we have𝑈𝑖∗ = 𝑈𝑖∗−1 ≤ − 𝑓

(1−𝑓 )𝐾 .

Note that the parameter 𝜂 is set such that IDL <
𝑓

(1−𝑓 )𝐾 . By (△), we know that𝜓𝑖∗ ≤ IDL. Thus,

we conclude that 𝑈𝑖∗ +𝜓𝑖∗ ≤ 0. It is easy to use the same induction above by two cases to show

that 𝑈𝑚+1+𝑘 +𝜓𝑚+1+𝑘 ≤ 𝑈𝑖∗ +𝜓𝑖∗ ≤ 0. Combining with the fact that 𝜓 (𝑠) ≥ 0, we conclude that

𝑈𝑚+1+𝑘 ≤ 0.

This finishes the proof. □

□


	Abstract
	1 Introduction
	1.1 Our Model and Contributions
	1.2 Overview of Insights in the Proofs
	1.3 Organization

	2 Background and Related Work
	2.1 Maximal Extractable Value
	2.2 MEV in AMMs
	2.3 Batch Auctions

	3 MEV in Batch Auctions
	3.1 Market Equilibrium Formulation of Batch Auctions
	3.2 MEV Optimization Problem
	3.3 Combinatorial Structures in the Batch-MEV problem
	3.4 Optimal MEV under Fisher Market
	3.5 NP-hardness for Optimal MEV under Arrow-Debreu Market
	3.6 UGC-hard for 1/2-approximate MEV under Arrow-Debreu Markets

	4 Hard to Approximate MEV in Constant Function Market Makers
	4.1 CFMMs Formalization and Execution of Transactions
	4.2 MEV Optimization Problem
	4.3 Computational Hardness

	5 Discussion and Open Problems
	Acknowledgments
	References
	A Proof of theorem: np hard swap

